The 2019 coronavirus disease (COVID-19) has rapidly spread across the globe. It is crucial to identify positive cases as rapidly as humanely possible to provide appropriate treatment for patients and prevent the pandemic from spreading further. Both chest X-ray and computed tomography (CT) images are capable of accurately diagnosing COVID-19. To distinguish lung illnesses (i.e., COVID-19 and pneumonia) from normal cases using chest X-ray and CT images, we combined convolutional neural network (CNN) and recurrent neural network (RNN) models by replacing the fully connected layers of CNN with a version of RNN. In this framework, the attributes of CNNs were utilized to extract features and those of RNNs to calculate dependencies and classification base on extracted features. CNN models VGG19, ResNet152V2, and DenseNet121 were combined with long short-term memory (LSTM) and gated recurrent unit (GRU) RNN models, which are convenient to develop because these networks are all available as features on many platforms. The proposed method is evaluated using a large dataset totaling 16,210 X-ray and CT images (5252 COVID-19 images, 6154 pneumonia images, and 4804 normal images) were taken from several databases, which had various image sizes, brightness levels, and viewing angles. Their image quality was enhanced via normalization, gamma correction, and contrast-limited adaptive histogram equalization. The ResNet152V2 with GRU model achieved the best architecture with an accuracy of 93.37%, an F1 score of 93.54%, a precision of 93.73%, and a recall of 93.47%. From the experimental results, the proposed method is highly effective in distinguishing lung diseases. Furthermore, both CT and X-ray images can be used as input for classification, allowing for the rapid and easy detection of COVID-19.
Brain tumors are among the main causes of cancer-related mortality in humans. Early detection of brain tumors is a vital job in the medical task of diagnosis and cure planning for patients. The automatic detection greatly facilitates medical personnel. Magnetic resonance imaging (MRI) is an accepted imaging strategy for diagnosing brain tumors. Presently, deep learning approaches have proven effective in handling various computer vision problems, such as image classification, because of their high performance and also determine models that can learn and decide based on sample data. In this study, the deep transfer learning method, namely InceptionResNet-V2, ResNet50, MobileNet-V2, and VGG16, was used to compare and find the most suitable model for brain tumor detection from the public MRI dataset. Also, CLAHE was employed as an image enhancement technique to improve the quality of the image data set before being used as the model input. As a result, the suggested method performed a prediction accuracy of up to 100%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.