Research over the past decade indicates a novel role for epigenetic mechanisms in memory formation. Of particular interest is chromatin modification by histone deacetylases (HDACs), which, in general, negatively regulate transcription. HDAC deletion or inhibition facilitates transcription during memory consolidation and enhances long-lasting forms of synaptic plasticity and long-term memory. A key open question remains: How does blocking HDAC activity lead to memory enhancements? To address this question, we tested whether a normal function of HDACs is to gate information processing during memory formation. We used a class I HDAC inhibitor, RGFP966 (C 21 H 19 FN 4 O), to test the role of HDAC inhibition for information processing in an auditory memory model of learning-induced cortical plasticity. HDAC inhibition may act beyond memory enhancement per se to instead regulate information in ways that lead to encoding more vivid sensory details into memory. Indeed, we found that RGFP966 controls memory induction for acoustic details of sound-toreward learning. Rats treated with RGFP966 while learning to associate sound with reward had stronger memory and additional information encoded into memory for highly specific features of sounds associated with reward. Moreover, behavioral effects occurred with unusually specific plasticity in primary auditory cortex (A1). Class I HDAC inhibition appears to engage A1 plasticity that enables additional acoustic features to become encoded in memory. Thus, epigenetic mechanisms act to regulate sensory cortical plasticity, which offers an information processing mechanism for gating what and how much is encoded to produce exceptionally persistent and vivid memories.
Neuronal plasticity that develops in the cortex during learning is assumed to represent memory content, but the functions of such plasticity are actually unknown. The shift in spectral tuning in primary auditory cortex (A1) to the frequency of a tone signal is a compelling candidate for a substrate of memory because it has all of the cardinal attributes of associative memory: associativity, specificity, rapid induction, consolidation, and long-term retention. Tuning shifts increase the representational area of the signal in A1, as an increasing function of performance level, suggesting that area encodes the magnitude of acquired stimulus significance. The present study addresses the question of the specific function of learning-induced associative representational plasticity. We tested the hypothesis that specific increases in A1 representational area for an auditory signal serve the mnemonic function of enhancing memory strength for that signal. Rats were trained to bar-press for reward contingent on the presence of a signal tone (5.0 kHz), and assessed for memory strength during extinction. The amount of representational area gain for the signal frequency band was significantly positively correlated with resistance to extinction to the signal frequency in two studies that spanned the range of task difficulty. These findings indicate that specific gain in cortical representational area underlies the strength of the behaviorally-relevant contents of memory. Thus, mnemonic functions of cortical plasticity are determinable.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.