Performance tests and analyses are critical to effective high-performance computing software development and are central components in the design and implementation of computational algorithms for achieving faster simulations on existing and future computing architectures for large-scale application problems. In this article, we explore performance and space-time trade-offs for important compute-intensive kernels of large-scale numerical solvers for partial differential equations (PDEs) that govern a wide range of physical applications. We consider a sequence of PDE-motivated bake-off problems designed to establish best practices for efficient high-order simulations across a variety of codes and platforms. We measure peak performance (degrees of freedom per second) on a fixed number of nodes and identify effective code optimization strategies for each architecture. In addition to peak performance, we identify the minimum time to solution at 80% parallel efficiency. The performance analysis is based on spectral and p-type finite elements but is equally applicable to a broad spectrum of numerical PDE discretizations, including finite difference, finite volume, and h-type finite elements.
The efficient utilization of mixed-precision numerical linear algebra algorithms can offer attractive acceleration to scientific computing applications. Especially with the hardware integration of low-precision special-function units designed for machine learning applications, the traditional numerical algorithms community urgently needs to reconsider the floating point formats used in the distinct operations to efficiently leverage the available compute power. In this work, we provide a comprehensive survey of mixed-precision numerical linear algebra routines, including the underlying concepts, theoretical background, and experimental results for both dense and sparse linear algebra problems.
This paper is devoted to GPU kernel optimization and performance analysis of three tensorproduct operators arising in finite element methods. We provide a mathematical background to these operations and implementation details. Achieving close-to-the-peak performance for these operators requires extensive optimization because of the operators' properties: low arithmetic intensity, tiered structure, and the need to store intermediate results inside the kernel. We give a guided overview of optimization strategies and we present a performance model that allows us to compare the efficacy of these optimizations against an empirically calibrated roofline.
Efficient exploitation of exascale architectures requires rethinking of the numerical algorithms used in many large-scale applications. These architectures favor algorithms that expose ultra fine-grain parallelism and maximize the ratio of floating point operations to energy intensive data movement. One of the few viable approaches to achieve high efficiency in the area of PDE discretizations on unstructured grids is to use matrix-free/partially assembled high-order finite element methods, since these methods can increase the accuracy and/or lower the computational time due to reduced data motion. In this paper we provide an overview of the research and development activities in the Center for Efficient Exascale Discretizations (CEED), a co-design center in the Exascale Computing Project that is focused on the development of next-generation discretization software and algorithms to enable a wide range of finite element applications to run efficiently on future hardware. CEED is a research partnership involving more than 30 computational scientists from two US national labs and five universities, including members of the Nek5000, MFEM, MAGMA and PETSc projects. We discuss the CEED co-design activities based on targeted benchmarks, miniapps and discretization libraries and our work on performance optimizations for large-scale GPU architectures. We also provide a broad overview of research and development activities in areas such as unstructured adaptive mesh refinement algorithms, matrix-free linear solvers, high-order data visualization, and list examples of collaborations with several ECP and external applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.