The development of new energy materials that can be utilized to make renewable and clean fuels from abundant and easily accessible resources is among the most challenging and demanding tasks in science today. Solar-powered catalytic water-splitting processes can be exploited as a source of electrons and protons to make clean renewable fuels, such as hydrogen, and in the sequestration of CO2 and its conversion into low-carbon energy carriers. Recently, there have been tremendous efforts to build up a stand-alone solar-to-fuel conversion device, the "artificial leaf", using light and water as raw materials. An overview of the recent progress in electrochemical and photo-electrocatalytic water splitting devices is presented, using both molecular water oxidation complexes (WOCs) and nano-structured assemblies to develop an artificial photosynthetic system.
Structural and optical properties of ZnO nanoparticles can be fine tuned by a novel variant of milling performed at cryogenic temperatures. In this study intrinsic defect centers such as oxygen and zinc vacancies are characterized using electron paramagnetic resonance (EPR) and photoluminescence (PL) spectroscopy. Three different surface defects with different g factors were identified by EPR for which the spectral intensities change upon decreasing the crystal size. EPR and PL intensities revealed a linear correlation giving detailed information about optical and electronic properties of ZnO. The core-shell model established from optical emission and EPR suggests distinguished electronic states in the band gap belonging to negatively charged Zn vacancies and positively charged oxygen vacancies. This model indicates a correlation between red emission and positively charged oxygen vacancies, which lead to a possible transition from a typical n-type to a p-type ZnO semiconductor.
Multi-colored, water soluble fluorescent carbon nanodots (C-Dots) with quantum yield changing from 4.6 to 18.3% were synthesized in multi-gram using dated cola beverage through a simple thermal synthesis method and implemented as conductive and ion donating supercapacitor component. Various properties of C-Dots, including size, crystal structure, morphology and surface properties along with their Raman and electron paramagnetic resonance spectra were analyzed and compared by means of their fluorescence and electronic properties. α-Manganese Oxide-Polypyrrole (PPy) nanorods decorated with C-Dots were further conducted as anode materials in a supercapacitor. Reduced graphene oxide was used as cathode along with the dicationic bis-imidazolium based ionic liquid in order to enhance the charge transfer and wetting capacity of electrode surfaces. For this purpose, we used octyl-bis(3-methylimidazolium)diiodide (C8H16BImI) synthesized by N-alkylation reaction as liquid ionic membrane electrolyte. Paramagnetic resonance and impedance spectroscopy have been undertaken in order to understand the origin of the performance of hybrid capacitor in more depth. In particular, we obtained high capacitance value (C = 17.3 μF/cm2) which is exceptionally related not only the quality of synthesis but also the choice of electrode and electrolyte materials. Moreover, each component used in the construction of the hybrid supercapacitor is also played a key role to achieve high capacitance value.
In this work, reduced graphene oxide (rGO) based electrode materials were developed to achieve a hybrid supercapacitor (SC) function. Therefore, several synthesis methods were developed to prepare a cost effective and environmentally friendly rGO. Additionally, to maintain the high surface area, spinel lithium titanate (sLTO) nanoparticles (NPs) were synthesized and deposited on the rGO surface to inhibit the restacking of the rGO layers on graphite. Furthermore, the adequate Fe-doping of sLTO increased the ionic conductivity and the intercalation capacity, which is necessary for a SC performance. The sLTO/rGO-composites were electrochemically analysed by chronopotentiometry and electrochemical impedance spectroscopy (EIS) to determine the stability during charge/discharge cycling and the capacity, respectively. To overcome the drawback of LTO's low conductivity values, its value has been drastically increased by Fe-doping. The results demonstrated the remarkable cycling performance of the Fe:LTO/rGO composite as well as a higher capacity compared to LTO/rGO and pure rGO-electrodes. The thermal stability, degradation and weight loss of the sLTO/rGO in the temperature range between 20 °C and 800 °C were investigated by thermogravimetry (TG)/DTA. As a conclusion, it can be stated that, increasing the ionic conductivity by Fe-doping drastically increases the hybrid capacity of the SC electrodes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.