Traffic is a medium to move from one point to another. Therefore, the role of traffic is very important to support vehicle mobility. If congestion occurs, mobility will be hampered so that it gives influence to other sectors such as financial, air pollution and traffic violations. This study aims to create a model to predict vehicle queue at the traffic lights when its status is red. The prediction is conducted by using Neural Network with Extreme Learning Machine method to predict the length of the vehicle queue, and Correlation Analysis was used to measure the correlation between the connected roads. The conducted experiments use data of the length of the vehicle queue at the traffic lights which was obtained from DISHUB (Transportation Bureau) DI Yogyakarta. Several experiments were carried out to determine the optimum prediction model of vehicle queue length. The experiments found that the optimum model had an average MAPE value of 15.5882% and an average Running Time of 5.2226 seconds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.