Magnetocaloric materials with a Curie temperature near room temperature have attracted significant interest for some time due to their possible application for high‐efficiency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance and implementation of such materials in actual devices. The phenomenology and fundamental thermodynamics of magnetocaloric materials is discussed, as well as the hysteresis behavior often found in first‐order materials. A number of theoretical and experimental approaches and their implications are reviewed. The question of how to evaluate the suitability of a given material for use in a magnetocaloric device is covered in some detail, including a critical assessment of a number of common performance metrics. Of particular interest is which non‐magnetocaloric properties need to be considered in this connection. An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented.
The active magnetic regenerator (AMR) is an alternative refrigeration cycle with a potential gain of energy efficiency compared to conventional refrigeration techniques. The AMR poses a complex problem of heat transfer, fluid dynamics and magnetic fields, which requires detailed and robust modeling. This paper reviews the existing numerical modeling of room temperature AMR to date. The governing equations, implementation of the magnetocaloric effect (MCE), fluid flow and magnetic field profiles, thermal conduction etc. are discussed in detail as is their impact on the AMR cycle. Flow channeling effects, hysteresis, thermal losses and demagnetizing fields are discussed and it is concluded that more detailed modeling of these phenomena is required to obtain a better understanding of the AMR cycle.Response to Reviewers: Dear Dr. Ziegler, We have increased the font size in Fig. 5 of the manuscript according to your requirements. We gratefully thank you for accepting the manuscript and wish you a merry Christmas.On behalf of the authors, Kaspar K. Nielsen, PhD . 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 Review on numerical modeling of active magnetic regenerators for room temperature applications 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 fields are discussed and it is concluded that more detailed modeling of these phenomena is required to obtain a better understanding of the AMR cycle.
The performance of a combined solar photovoltaic (PV) and thermoelectric generator (TEG) system is examined using an analytical model for four different types of commercial PVs and a commercial bismuth telluride TEG. The TEG is applied directly on the back of the PV, so that the two devices have the same temperature. The PVs considered are crystalline Si (c-Si), amorphous Si (a-Si), copper indium gallium (di)selenide (CIGS) and cadmium telluride (CdTe) cells. The degradation of PV performance with temperature is shown to dominate the increase in power produced by the TEG, due to the low efficiency of the TEG. For c-Si, CIGS and CdTe PV cells the combined system produces a lower power and has a lower efficiency than the PV alone, whereas for an a-Si cell the total system performance may be slightly increased by the TEG.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.