1. A sediment core from the shallow, hypertrophic Lake Søbygaard (mean depth ∼1 m; [TP] 310 μg P L−1) was analysed for subfossil remains to reconstruct chironomid community changes in relation to the succession and disappearance of aquatic macrophytes. 2. Species composition in the 1.10 m core indicates a succession from a ‘naturally’ eutrophic state to a hypertrophic state during recent centuries. Radiometric dating (210Pb) of the uppermost 20 cm of the sediment core (∼1932–93) indicates that sediment accumulation rate had doubled in recent decades. 3. Changes in chironomid assemblages were in close agreement with changes in both diatoms and macrophyte remains in the same core. Distinct changes in chironomid communities reflect the eutrophication process and macrophyte succession through Chara, Ceratophyllum and Potamogeton dominance to the present state, with complete loss of submerged vegetation and dominance by phytoplankton. 4. The co‐occurrence and relationship between aquatic macrophyte diversity and recent subfossil chironomid assemblages were assessed from an additional 25 Danish lakes. There was good agreement between the macrophyte and chironomid‐based lake groupings. Overall, a significant difference (P<0.001) was found in chironomid assemblages among lakes in different macrophyte classes. In a pair‐wise comparison, the poorly buffered mesotrophic lakes and the alkaline eutrophic lakes had significantly different chironomid assemblages. 5. Chironomid taxa commonly reported to be associated with macrophytes (Cricotopus, Endochironomus and Glyptotendipes) were shown also to be indicators of highly productive lakes lacking abundant submerged vegetation.
Calibration data sets give a unique opportunity to establish patterns of biological existence and their statistical associations with environmental variables. By use of calibration data sets, environmental variables can be inferred quantitatively. The resulting long time-series may assist in distinguishing natural environmental variability from human-induced variability, both in terms of climate change and biotic turnover. However, the validity of the palaeoenvironmental reconstructions depends on their accuracy, precision and sensibility. Before performing palaeoenvironmental inferences, key mechanisms controlling contemporary species’ distribution, abundances and dynamics should be identified and understood. An inference model is developed to produce reconstructions. A major challenge lies in validating and interpreting the reconstructions. Calibration data sets involving midges (Diptera: Chironomidae) suggest that climate has a broad-scale, regional control over midge existence and abundance, often over-riding the influence of local within-lake variables. In recent years, the use of midges as quantitative indicators of past temperatures has greatly expanded. As the number of reconstructions increase, especially in Fennoscandia and North America, it seems the among-site variability is so large that it is unlikely to be due only to local differences in climate. Hence, we question whether the long climate gradients in calibration data sets can accurately be used to calibrate local variables, when most local gradients in time and space are short. Ten Holocene chironomid-inferred temperature curves from Fennoscandia are compared. We illustrate some general principles in palaeoecology by identifying factors that may cause bias. Especially, we consider how calibration data sets simplify the complexity of the real world by maximizing single ecological gradients and by not taking into account co-varying variables. We give some recommendations and criteria that chironomid analysis should meet in order to improve the reliability of the temperature inferences. Finally, we discuss how the complex interactions between species and environment may have implications when we aim at predicting future biodiversity.
1. Surface‐sediment assemblages of subfossil chironomid head capsules from fifty‐four primarily shallow and nutrient‐rich Danish lakes were analysed using multivariate numerical techniques. The species data, comprising forty‐one chironomid taxa, were compared to environmental monitoring data in order to establish a relationship between chironomid faunal composition and lake trophic state. 2. The subfossil assemblages were compared to the chironomid bathymetric distributions along transects from four lakes. Correspondence analysis and similarity coefficients showed that the subfossil assemblages, sampled in the lake centre, reflect the chironomid communities in the littoral at a depth of 2–7 m. 3. Two‐way indicator species analysis (TWINSPAN) was used to classify the Danish lakes into five groups defined by trophic state, lake depth and pH. Eighteen chironomid taxa showed significant differences in abundance among the five groups. Canonical correspondence analysis (CCA) showed the chlorophyll a concentration ([Chl a]) and Secchi depth to be the variables best correlated to the faunal data, and fourteen taxa were significantly correlated to [Chl a]. 4. The strong correlation between chironomid data and the ln‐transformed ([Chl a]) was used to create a weighted averaging (WA) model to infer lake trophic state. Several models were tested by cross validation (leave‐one‐out jack‐knifing), and a simple WA model using inverse de‐shrinking had a RMSEPjack of 0.65 (ln units) and a r2jack of 0.67. 5. The results can be used in the assessment and reconstruction of lake trophic state for long‐term monitoring and palaeoecological investigations of shallow, temperate lakes in the mesotrophic to hypertrophic nutrient range.
The light field on coral reefs varies in intensity and spectral composition, and is the key regulating factor for phototrophic reef organisms, for example scleractinian corals harbouring microalgal symbionts. However, the actual efficiency of light utilization in corals and the mechanisms affecting the radiative energy budget of corals are underexplored. We present the first balanced light energy budget for a symbiont-bearing coral based on a fine-scale study of the microenvironmental photobiology of the massive coral Montastrea curta. The majority (more than 96%) of the absorbed light energy was dissipated as heat, whereas the proportion of the absorbed light energy used in photosynthesis was approximately 4.0% under an irradiance of 640 mmol photons m 22 s 21. With increasing irradiance, the proportion of heat dissipation increased at the expense of photosynthesis. Despite such low energy efficiency, we found a high photosynthetic efficiency of the microalgal symbionts showing high gross photosynthesis rates and quantum efficiencies (QEs) of approximately 0.1 O 2 photon 21 approaching theoretical limits under moderate irradiance levels. Corals thus appear as highly efficient light collectors with optical properties enabling light distribution over the corallite/tissue microstructural canopy that enables a high photosynthetic QE of their photosynthetic microalgae in hospite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.