Symbiotic Urban Agriculture Networks (SUANs) are a specific class of symbiotic networks that intend to close material and energy loops from cities and urban agriculture. Private and public stakeholders in SUANs face difficulties in the implementation of technological and organisational design interventions due to the complex nature of the agricultural and urban environment. Current research on the dynamics of symbiotic networks, especially Industrial Symbiosis (IS), is based on historical data from practice, and provides only partly for an understanding of symbiotic networks as a sociotechnical complex adaptive system. By adding theory and methodology from Design Science, participatory methods, and by using agent-based modelling as a tool, prescriptive knowledge is developed in the form of grounded and tested design rules for SUANs. In this paper, we propose a conceptual Design Science method with the aim to develop an empirically validated participatory agent-based modelling strategy that guides sociotechnical design interventions in SUANs. In addition, we present a research agenda for further strategy, design intervention, and model development through case studies regarding SUANs. The research agenda complements the existing analytical work by adding a necessary Design Science approach, which contributes to bridging the gap between IS dynamics theory and practical complex design issues.
Industrial Symbiosis Networks (ISNs) consist of firms that exchange residual materials and energy locally, in order to gain economic, environmental and/or social advantages. In practice, ISNs regularly fail when partners leave and the recovery of residual streams ends. Regarding the current societal need for a shi towards sustainability, it is undesirable that ISNs should fail. Failures of ISNs may be caused by actor behaviour that leads to unanticipated economic losses. In this paper, we explore the e ect of these behaviours on ISN robustness by using an agent-based model (ABM). The constructed model is based on insights from both literature and participatory modelling in three real-world cases. It simulates the implementation of synergies for local waste exchange and compost production. The Theory of Planned Behaviour (TPB) was used to model agent behaviour in time-dependent bilateral negotiations and synergy evaluation processes. We explored model behaviour with and without TPB logic across a range of possible TPB input variables. The simulation results show how the modelled planned behaviour a ects the cash flow outcomes of the social agents and the robustness of the network. The study contributes to the theoretical development of industrial symbiosis research by providing a quantitative model of all ISN implementation stages, in which various behavioural patterns of entrepreneurs are included. It also contributes to practice by o ering insights on how network dynamics and robustness outcomes are not only related to context and ISN design, but also to actor behaviour.
This study furthers game-based learning for circular business model innovation (CBMI), the complex, dynamic process of designing business models according to the circular economy principles. The study explores how game-play in an educational setting affects learning progress on the level of business model elements and from the perspective of six learning categories. We experimented with two student groups using our game education package Re-Organise. All students first studied a reader and a game role description and then filled out a circular business model canvas and a learning reflection. The first group, i.e., the game group, updated the canvas and the reflection in an interactive tutorial after gameplay. The control group submitted their updated canvas and reflection directly after the interactive tutorial without playing the game. The results were analyzed using text-mining and qualitative methods such as word co-occurrence and sentiment polarity. The game group created richer business models (using more waste processing technologies) and reflections with stronger sentiments toward the learning experience. Our detailed study results (i.e., per business model element and learning category) enhance understanding of game-based learning for circular business model innovation while providing directions for improving serious games and accompanying educational packages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.