Supplemental Digital Content is available in the text.
Remote ischemic preconditioning (rIPC), induced by cycles of transient limb ischemia and reperfusion (IR), is cardioprotective. The optimal rIPC-algorithm is not established. We investigated the effect of cycle numbers and ischemia duration within each rIPC-cycle and the influence of effector organ mass on the efficacy of cardioprotection. Furthermore, the duration of the early phase of protection by rIPC was investigated. Using a tourniquet tightened at the inguinal level, we subjected C57Bl/6NTac mice to intermittent hind-limb ischemia and reperfusion. The rIPC-protocols consisted of (I) two, four, six or eight cycles, (II) 2, 5 or 10 min of ischemia in each cycle, (III) single or two hind-limb occlusions and (IV) 0.5, 1.5, 2.0 or 2.5 h intervals from rIPC to index cardiac ischemia. All rIPC algorithms were followed by 5 min of reperfusion. The hearts were subsequently exposed to 25 min of global ischemia and 60 min of reperfusion in an ex vivo Langendorff model. Cardioprotection was evaluated by infarct size and post-ischemic hemodynamic recovery. Four to six rIPC cycles yielded significant cardioprotection with no further protection by eight cycles. Ischemic cycles lasting 2 min offered the same protection as cycles of 5 min ischemia, whereas prolonged cycles lasting 10 min abrogated protection. One and two hind-limb preconditioning were equally protective. In our mouse model, the duration of protection by rIPC was 1.5 h. These findings indicate that the number and duration of cycles rather than the tissue mass exposed to rIPC determines the efficacy of rIPC.
Background: Patients with congestive heart failure (CHF) have impaired functional capacity and inferior quality of life. The clinical manifestations are associated with structural and functional impairments in skeletal muscle, emphasizing a need for feasible rehabilitation strategies beyond optimal anticongestive medical treatment. We investigated whether low-load blood flow restricted resistance exercise (BFRRE) or remote ischemic conditioning (RIC) could improve functional capacity and quality of life in patients with CHF and stimulate skeletal muscle myofibrillar and mitochondrial adaptations. Methods: We randomized 36 patients with CHF to BFRRE, RIC, or nontreatment control. BFRRE and RIC were performed 3× per week for 6 weeks. Before and after intervention, muscle biopsies, tests of functional capacity, and quality of life assessments were performed. Deuterium oxide was administered throughout the intervention to measure cumulative RNA and subfraction protein synthesis. Changes in muscle fiber morphology and mitochondrial respiratory function were also assessed. Results: BFRRE improved 6-minute walk test by 39.0 m (CI, 7.0–71.1, P =0.019) compared with control. BFRRE increased maximum isometric strength by 29.7 Nm (CI, 10.8–48.6, P =0.003) compared with control. BFRRE improved quality of life by 5.4 points (CI, −0.04 to 10.9; P =0.052) compared with control. BFRRE increased mitochondrial function by 19.1 pmol/s per milligram (CI, 7.3–30.8; P =0.002) compared with control. RIC did not produce similar changes. Conclusions: Our results demonstrate that BFRRE, but not RIC, improves functional capacity, quality of life, and muscle mitochondrial function. Our findings have clinical implications for rehabilitation of patients with CHF and provide new insights on the myopathy accompanying CHF. Clinical Trial Registration: URL: https://www.clinicaltrials.gov . Unique identifier: NCT03380663.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.