Purpose
This paper aims to theoritically investigate the free convection flow and heat transfer of a non-Newtonian fluid with pseudoplastic behavior in a cylindrical vertical cavity partially filled with a layer of a porous medium.
Design/methodology/approach
The non-Newtonian behavior of the pseudoplastic liquid is described by using a power-law non-Newtonian model. There is a temperature difference between the internal and external cylinders. The porous layer is attached to the internal cylinder and has a thickness of D. Upper and lower walls of the cavity are well insulated. The governing equations are transformed into a non-dimensional form to generalize the solution. The finite element method is used to solve the governing equations numerically. The results are compared with the literature results in several cases and found in good agreement.
Findings
The influence of the thickness of the porous layer, Rayleigh number and non-Newtonian index on the heat transfer behavior of a non-Newtonian pseudoplastic fluid is addressed. The increase of pseudoplastic behavior and increase of the thickness of the porous layer enhances the heat transfer. By increase of the porous layer from 0.6 to 0.8, the average Nusselt number increased from 0.15 to 0.25. The increase of non-Newtonian effects (decrease of the non-Newtonian power-law index) enhances the heat transfer rate.
Originality/value
The free convection behavior of a pseudoplastic-non-Newtonian fluid in a cylindrical enclosure partially filled by a layer of a porous medium is addressed for the first time.
Purpose
This paper aims to investigate melting heat transfer of a non-Newtonian phase change material (PCM) in a cylindrical enclosure-space between two tubes using a deformed mesh method.
Design/methodology/approach
Metal foam porous layers support the inner and outer walls of the enclosure. The porous layers and clear space of the enclosure are filled with PCM. The natural convection effects during the phase change are taken into account, and the governing equations for the molten region and solid region of the enclosure are introduced. The governing equations are transformed into non-dimensional form and then solved using finite element method. The results are compared with the literary works and found in good agreement. The non-Newtonian effects on the phase change heat transfer and melting front are studied.
Findings
The results show that the increase of non-Newtonian effects (the decrease of the power-law index) enhances the heat melting process in the cavity at the moderate times of phase change heat transfer. The temperature gradients in porous metal foam over the hot wall are small, and hence, the porous layer notably increases the melting rate. When the melting front reaches the cold porous layer, strong non-linear behaviors of the melting front can be observed.
Originality/value
The phase change heat transfer of non-Newtonian fluid in a cylindrical enclosure partially filled with metal foams is addressed for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.