Endometriosis is a complex, inflammatory disease that affects 6-10% of reproductive-aged women. Almost half of the women with endometriosis experience infertility. Despite the excessive prevalence, the pathogenesis of endometriosis and its associated infertility is unknown and a cure is not available. While many theories have been suggested to link endometriosis and infertility, a consensus among investigators has not emerged. In this extensive review of the literature as well as research from our laboratory, we provide potential insights into the role of immune dysfunction in endometriosis associated infertility. We discuss the implication of the peritoneal inflammatory microenvironment on various factors that contribute to infertility such as hormonal imbalance, oxidative stress and how these could further lead to poor oocyte, sperm and embryo quality, impaired receptivity of the endometrium and implantation failure.
Objective To determine if the molecular profiles of endometriotic lesions contain informative measures of inflammation and immune dysfunction that may contribute to better understanding of the interplay between immune dysfunction and inflammation and their contribution to endometriosis pathogenesis. Design Immune and inflammation transcriptomic analysis with the use of the Nanostring nCounter GX Human Immunology V2 platform (579 human immune and inflammation–related genes and 15 housekeeping genes). Setting Academic university and teaching hospital. Intervention(s) None. Patient(s) Stage III–IV endometriosis patients with infertility (n = 8) and fertile disease-free control women undergoing tubal ligation (n = 8). Menstrual stage was matched to secretory phase in all participants. Main Outcome Measure(s) Immune and inflammation transcriptomics quantification from ectopic endometriotic lesions and matched eutopic endometrium from patients. Endometria of fertile women served as control subjects. Result(s) Our results displayed endometriotic lesions as molecularly distinct entities compared with eutopic endometrium and endometrium of control samples; 396 out of 579 screened immune and inflammation–related genes were significantly different in ectopic tissues compared with control endometrium. Most importantly, eutopic endometrium of the patients displayed a unique molecular profile compared with the control endometrium (91/579 genes were significantly different), particularly of genes involved in regulation of cell apoptosis and decidualization. Conclusion(s) We characterize differential expression of immune-inflammation genes in endometriosis patients, and show molecular distinction of eutopic endometrium of patients compared with control fertile women.
Exosomes and microvesicles are extracellular vesicles released from cells and can contain lipids, miRNAs and proteins that affect cells at distant sites. Recently, microvesicles containing miRNA have been implicated in uterine microenvironment of pigs, a species with unique epitheliochorial (non-invasive) placentation. Here we report a novel role of conceptus-derived exosomes/microvesicles (hereafter referred to as extracellular vesicles; EVs) in embryo-endometrial cross-talk. We also demonstrate the stimulatory effects of EVs (PTr2-Exo) derived from porcine trophectoderm-cells on various biological processes including the proliferation of maternal endothelial cells (PAOEC), potentially promoting angiogenesis. Transmission immuno-electron microscopy confirmed the presence of EVs in tissue biopsies, PTr2-Exo and PAOEC-derived EVs (PAOEC-Exo). RT-PCR detected 14 select miRNAs in CD63 positive EVs in which miR-126-5P, miR-296-5P, miR-16, and miR-17-5P were the most abundant angiogenic miRNAs. Proteomic analysis revealed EV proteins that play a role in angiogenesis. In-vitro experiments, using two representative cell lines of maternal-fetal interface, demonstrated bidirectional EVs shuttling between PTr2 and PAOEC cells. Importantly, these studies support the idea that PTr2-Exo and PAOEC-Exo containing select miRNAs and proteins can be successfully delivered to recipient cells and that they may have a biological role in conceptus-endometrial cross-talk crucial for the pregnancy success.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.