Studies of compensatory changes in visual functions in response to auditory loss have shown that enhancements tend to be restricted to the processing of specific visual features, such as motion in the periphery. Previous studies have also shown that deaf individuals can show greater face processing abilities in the central visual field. Enhancements in the processing of peripheral stimuli are thought to arise from a lack of auditory input and subsequent increase in the allocation of attentional resources to peripheral locations, while enhancements in face processing abilities are thought to be driven by experience with American sign language and not necessarily hearing loss. This combined with the fact that face processing abilities typically decline with eccentricity suggests that face processing enhancements may not extend to the periphery for deaf individuals. Using a face matching task, the authors examined whether deaf individuals’ enhanced ability to discriminate between faces extends to the peripheral visual field. Deaf participants were more accurate than hearing participants in discriminating faces presented both centrally and in the periphery. Their results support earlier findings that deaf individuals possess enhanced face discrimination abilities in the central visual field and further extend them by showing that these enhancements also occur in the periphery for more complex stimuli.
Completion of Alcohol-Wise had effects on academic achievement. Specifically, at the 24 week follow-up, academic achievement was higher in participants who received the intervention first semester of their freshman year as compared to the waitlist control. The incremental rise in heavy episodic drinking during the first semester of college was also reduced in waitlisted participants by Alcohol-Wise administration prior to second semester. Conclusion/Importance: Implications for the timing of web-based alcohol interventions to include administration prior to both first and second semesters of the freshman year are discussed.
These findings highlight the need to reconsider current evaluation practices, in particular, the use of forced-choice paradigms with a few highly trained items. While appropriate for measuring the performance thresholds in acuity or contrast sensitivity of a functioning visual system, performance on such tasks cannot be taken to indicate restored spatial pattern vision.
Color vision and spectral sensitivity vary among individuals with normal color vision; thus, for many applications, it is important to measure and correct for an observer’s sensitivity. Full correction would require measuring color and luminance matches and is rarely implemented. However, luminance matches (equiluminance settings) are routinely measured and simple to conduct. We modeled how well an observer’s color matches could be approximated by measuring only luminance sensitivity, since both depend on a common set of factors. We show that lens and macular pigment density and L / M cone ratios alter equiluminance settings in different ways and can therefore be estimated from the settings. In turn, the density variations can account for a large proportion of the normal variation in color matching. Thus, luminance matches may provide a simple method to at least partially predict an observer’s color matches without requiring more complex tasks or equipment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.