This paper introduces the effect of heat absorption (generation) and suction (injection) on magnetohydrodynamic (MHD) boundary-layer flow of Casson nanofluid (CNF) via a non-linear stretching surface with the viscous dissipation in two dimensions. By utilizing the similarity transformations, the leading PDEs are transformed into a set of ODEs with adequate boundary conditions and then resolved numerically by (4-5) th -order Runge-Kutta Fehlberg procedure based on the shooting technique. Numerical computations are carried out by Maple 15 software. With the support of graphs, the impact of dimensionless control parameters on the nanoparticle concentration profiles, the temperature, and the flow velocity are studied. Other parameters of interest, such as the skin friction coefficient, heat, and mass transport at the diverse situation and dependency of various parameters are inspected through tables and graphs. Additionally, it is verified that the numerical computations with the reported earlier studies are in an excellent approval. It is found that the heat and mass transmit rates are enhanced with the increasing values of the power-index and the suction (blowing) parameter, whilst are reduced with the boosting Casson and the heat absorption (generation) parameters. Also, the drag force coefficient is an increasing function of the powerindex and a reduction function of Casson parameter.
This work is focused on steady flow and heat transfer in a porous medium saturated with a Sisko nanofluid (nonNewtonian power-law) over a nonlinearly stretching sheet in the presence of heat generation/absorption. Nonlinear PDEs are transformed into a system of coupled nonlinear ODEs with related boundary conditions using similarity transformation. The reduced equations are then solved numerically using the Runge-Kutta-Fehlberg fourth-fifth order method (RKF45) with Maple 14.0 software. The solutions depend on the power-law index n and the effect of pertinent parameter such as the Brownian motion parameter, thermophoresis parameter, Lewis number, the permeability, and the heat generation/absorption on the dimensionless velocity, temperature, and nanoparticles volume fraction and also on the skin friction, local Nusselt, and Sherwood numbers are produced for values of the influence parameter. A rapprochement of the numerical results of the actual study with formerly published data detected an excellent agreement.
K E Y W O R D Sheat generation/absorption, non-linear stretching surface, porous medium,
Sisko nanofluidHeat Transfer-Asian Res. 2018;47:54-71.wileyonlinelibrary.com/journal/htj
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.