We present the design, fabrication, and characterization of high quality factor (Q ~10(3)) and small mode volume (V ~0.75 (λ/n)(3)) planar photonic crystal cavities from cubic (3C) thin films (thickness ~200 nm) of silicon carbide (SiC) grown epitaxially on a silicon substrate. We demonstrate cavity resonances across the telecommunications band, with wavelengths from 1.25 - 1.6 μm. Finally, we discuss possible applications in nonlinear optics, optical interconnects, and quantum information science.
The progress in integration of nanodiamond with photonic devices is analyzed in the light of quantum optical applications. Nanodiamonds host a variety of optically active defects, called color centers, which provide rich ground for photonic engineering. Theoretical introduction describing light and matter interaction between optical modes and a quantum emitter is presented, including the role of the Debye-Waller factor typical of color center emission. The synthesis of diamond nanoparticles is discussed in an overview of methods leading to experimentally realized hybrid platforms of nanodiamond with gallium phosphide, silicon dioxide, and silicon carbide. The trade-offs in the substrate index of refraction values are reviewed in the context of the achieved strength of light and matter interaction. Thereby, the recent results on the growth of color center-rich nanodiamond on prefabricated silicon carbide microdisk resonators are presented. These hybrid devices achieve up to fivefold enhancement of the diamond color-center light emission and can be employed in integrated quantum photonics.
We present the design, fabrication and characterization of cubic (3C) silicon carbide microdisk resonators with high quality factor modes at visible and near infrared wavelengths (600 -950 nm). Whispering gallery modes with quality factors as high as 2,300 and corresponding mode volumes V ~ 2 × (λ/n) 3 are measured using laser scanning confocal microscopy at room temperature. We obtain excellent correspondence between transverse-magnetic (TM) and transverse-electric (TE) polarized resonances simulated using Finite Difference Time Domain (FDTD) method and those observed in experiment. These structures based on ensembles of optically active impurities in 3C-SiC resonators could play an important role in diverse applications of nonlinear and quantum photonics, including low power optical switching and quantum memories.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.