Background Consumer-wearable activity trackers are small electronic devices that record fitness and health-related measures. Objective The purpose of this systematic review was to examine the validity and reliability of commercial wearables in measuring step count, heart rate, and energy expenditure. Methods We identified devices to be included in the review. Database searches were conducted in PubMed, Embase, and SPORTDiscus, and only articles published in the English language up to May 2019 were considered. Studies were excluded if they did not identify the device used and if they did not examine the validity or reliability of the device. Studies involving the general population and all special populations were included. We operationalized validity as criterion validity (as compared with other measures) and construct validity (degree to which the device is measuring what it claims). Reliability measures focused on intradevice and interdevice reliability. Results We included 158 publications examining nine different commercial wearable device brands. Fitbit was by far the most studied brand. In laboratory-based settings, Fitbit, Apple Watch, and Samsung appeared to measure steps accurately. Heart rate measurement was more variable, with Apple Watch and Garmin being the most accurate and Fitbit tending toward underestimation. For energy expenditure, no brand was accurate. We also examined validity between devices within a specific brand. Conclusions Commercial wearable devices are accurate for measuring steps and heart rate in laboratory-based settings, but this varies by the manufacturer and device type. Devices are constantly being upgraded and redesigned to new models, suggesting the need for more current reviews and research.
Background Walkability is a popular term used to describe aspects of the built and social environment that have important population-level impacts on physical activity, energy balance, and health. Although the term is widely used by researchers, practitioners, and the general public, and multiple operational definitions and walkability measurement tools exist, there are is no agreed-upon conceptual definition of walkability. Method To address this gap, researchers from Memorial University of Newfoundland hosted “The Future of Walkability Measures Workshop” in association with researchers from the Canadian Urban Environmental Health Research Consortium (CANUE) in November 2017. During the workshop, trainees, researchers, and practitioners worked together in small groups to iteratively develop and reach consensus about a conceptual definition and name for walkability. The objective of this paper was to discuss and propose a conceptual definition of walkability and related concepts. Results In discussions during the workshop, it became clear that the term walkability leads to a narrow conception of the environmental features associated with health as it inherently focuses on walking. As a result, we suggest that the term Active Living Environments, as has been previously proposed in the literature, are more appropriate. We define Active Living Environments (ALEs) as the emergent natural, built, and social properties of neighbourhoods that promote physical activity and health and allow for equitable access to health-enhancing resources. Conclusions We believe that this broader conceptualization allows for a more comprehensive understanding of how built, natural, and social environments can contribute to improved health for all members of the population.
BACKGROUND Consumer-wearable activity trackers are small electronic devices that record fitness and health-related measures. The purpose of this systematic review is to examine the validity and reliability of commercial wearables in measuring step count, heart rate, and energy expenditure. OBJECTIVE To outline and summarize information about the validity and reliability of wearables in measuring step count, heart rate, and energy expenditure in any population METHODS We identified devices to be included in the review. Database searches were conducted in PubMed, Embase, and SPORTDiscus, and only included articles published in the English language up to May 2019. Studies were excluded if they did not identify the device used and if they did not examine the validity and/or reliability of a device. Studies including the general population and all special populations were included. We operationalized validity as criterion (as compared to other measures) and construct (degree to which device is measuring what it purports) validity. Reliability measures focused on intradevice and interdevice reliability. RESULTS We included 158 publications examining 9 different commercial wearable device brands. Fitbit was by far the most studied brand. In lab-based settings Fitbit, Apple Watch, and Samsung appeared to measure steps accurately. Heart rate was more variable with Apple Watch and Garmin being the most accurate, and Fitbit tending towards underestimation. For energy expenditure, no brand was accurate. We also examined validity between devices within a specific brand. CONCLUSIONS Commercial wearable devices are accurate in measuring steps and heart rate in lab based settings, but this varies by the manufacturer and device type. Devices are constantly being upgraded and redesigned to new models, suggesting the need for more current reviews and research. CLINICALTRIAL NA
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.