Today there exist a wide variety of scientific workflow management systems, each designed to fulfill the needs of a certain scientific community. Unfortunately, once a workflow application has been designed in one particular system it becomes very hard to share it with users working with different systems. Portability of workflows and interoperability between current systems barely exists. In this work, we present the fine-grained interoperability solution proposed in the SHIWA European project that brings together four representative European workflow systems: ASKALON, MOTEUR, WS-PGRADE, and Triana. The proposed interoperability is realised at two levels of abstraction: abstract and concrete. At the abstract level, we propose a generic Interoperable Workflow Intermediate Representation (IWIR) that can be used as a common bridge for translating workflows between different languages independent of the underlying distributed computing infrastructure. At the concrete level, we propose a bundling technique that aggregates the abstract IWIR representation and concrete task representations to enable workflow instantiation, execution and scheduling. We illustrate case studies using two real-workflow applications designed in a native environment and then translated and executed by a foreign workflow system in a foreign distributed computing infrastructure.
Today, Cloud computing proposes an attractive alternative to building large-scale distributed computing environments by which resources are no longer hosted by the scientists' computational facilities, but leased from specialised data centres only when and for how long they are needed. This new class of Cloud resources raises new interesting research questions in the fields of resource management, scheduling, fault tolerance, or quality of service, requiring hundreds to thousands of experiments for finding valid solutions. To enable such research, a scalable simulation framework is typically required for early prototyping, extensive testing and validation of results before the real deployment is performed. The scope of this paper is twofold. In the first part we present GroudSim, a Grid and Cloud simulation toolkit for scientific computing based on a scalable simulation-independent discrete-event engine. GroudSim provides a comprehensive set of features for complex simulation scenarios from simple job executions on leased computing resources to file transfers, calculation of costs and background load on resources. Simulations can be parameterised and are easily extendable by probability distribution packages for failures which normally occur in complex distributed environments. Experimental results demonstrate the improved scalability of GroudSim compared to a related process-based simulation approach. In the second part, we show the use of the GroudSim simulator to analyse the problem of dynamic provisioning of Cloud resources to scientific workflows that do not benefit from sufficient Grid resources as required by their computational demands. We propose and study four strategies for provisioning and releasing Cloud resources that take into account the general leasing model encountered in today's commercial Cloud environments based on resource bulks, fuzzy descriptions and hourly payment intervals. We study the impact of our techniques to the overall execution time, overall cost and cost per unit of saved time with respect to various instance types offered by the Amazon EC2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.