The prediction reliability is of primary concern in many clinical studies when the objective is to develop new predictive models or improve existing risk scores. In fact, before using a model in any clinical decision making, it is very important to check its ability to discriminate between subjects who are at risk of, for example, developing certain disease in a near future from those who will not. To that end, the time-dependent receiver operating characteristic (ROC) curve is the most commonly used method in practice. Several approaches have been proposed in the literature to estimate the ROC nonparametrically in the context of survival data. But, except one recent approach, all the existing methods provide a nonsmooth ROC estimator whereas, by definition, the ROC curve is smooth. In this article we propose and study a new nonparametric smooth ROC estimator based on a weighted kernel smoother. More precisely, our approach relies on a well-known kernel method used to estimate cumulative distribution functions of random variables with bounded supports. We derived some asymptotic properties for the proposed estimator. As bandwidth is the main parameter to be set, we present and study different methods to appropriately select one. A simulation study is conducted, under different scenarios, to prove the consistency of the proposed method and to compare its finite sample performance with a competitor. The results show that the proposed method performs better and appear to be quite robust to bandwidth choice. As for inference purposes, our results also reveal the good performances of a proposed nonparametric bootstrap procedure. Furthermore, we illustrate the method using a real data example.
During the last decades, several approaches have been proposed to estimate the timedependent area under the receiver operating characteristic curve (AUC) of risk tools derived from survival data. The validity of these estimators relies on some regularity assumptions among which a survival function being proper. In practice, this assumption is not always satisfied because a fraction of the population may not be susceptible to experience the event of interest even for long follow-up. Studying the sensitivity of the proposed estimators to the violation of this assumption is of substantial interest. In this paper, we investigate the performance of a nonparametric simple estimator, developed for classical survival data, in the case when the population exhibits a cure fraction. Motivated from the current practice of deriving risk tools in oncology and cardiovascular disease prevention, we also assess the loss, in terms of predictive performance, when deriving risk tools from survival models that do not acknowledge the presence of cure. The simulation results show that the investigated method is valid even under the presence of cure. They also show that risk tools derived from survival models that ignore the presence of cure have smaller AUC compared to those derived from survival models that acknowledge the presence of cure. This was also attested with a real data analysis from a breast cancer study. K E Y W O R D SCox model, mixture cure models, promotion time models, risk tools, time-dependent AUC 1430
The receiver‐operating characteristic (ROC) curve is the most popular graphical method for evaluating the classification accuracy of a diagnostic marker. In time‐to‐event studies, the subject's event status is time‐dependent, and hence, time‐dependent extensions of ROC curve have been proposed. However, in practice, the calculation of this curve is not straightforward due to the presence of censoring that may be of different types. Existing methods focus on the more standard and simple case of right‐censoring and neglect the general case of mixed interval‐censored data that may involve left‐, right‐, and interval‐censored observations. In this context, we propose and study a new time‐dependent ROC curve estimator. We also consider some summary measures (area under the ROC curve and Youden index) traditionally associated with ROC as well as the Youden‐based cutoff estimation method. The proposed method uses available data very efficiently. To this end, the unknown status (positive or negative) of censored subjects are estimated from the data via the estimation of the conditional survival function given the marker. For that, we investigate both model‐based and nonparametric approaches. We also provide variance estimates and confidence intervals using Bootstrap. A simulation study is conducted to investigate the finite sample behavior of the proposed methods and to compare their performance with a competitor. Globally, we observed better finite sample performances for the proposed estimators. Finally, we illustrate the methods using two data sets one from a hypobaric decompression sickness study and the other from an oral health study. The proposed methods are implemented in the R package cenROC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.