Endometriosis is characterized by the ectopic development of the endometrium which relies on angiogenesis. Although studies have identified the involvement of different matrix metalloproteinases (MMPs) in endometriosis, no study has yet investigated the role of MMP-2 in endometriosis-associated angiogenesis. The present study aims to understand the regulation of MMP-2 activity in endothelial cells and on angiogenesis during progression of ovarian endometriosis. Histological and biochemical data showed increased expressions of vascular endothelial growth factor (VEGF), VEGF receptor-2, cycloxygenase (COX)-2, von Willebrand factor along with angiogenesis during endometriosis progression. Women with endometriosis showed decreased MMP-2 activity in eutopic endometrium as compared to women without endometriosis. However, ectopic ovarian endometrioma showed significantly elevated MMP-2 activity with disease severity. In addition, increased MT1MMP and decreased tissue inhibitors of metalloproteinases (TIMP)-2 expressions were found in the late stages of endometriosis indicating more MMP-2 activation with disease progression. In vitro study using human endothelial cells showed that prostaglandin E2 (PGE2) significantly increased MMP-2 activity as well as tube formation. Inhibition of COX-2 and/or phosphorylated AKT suppressed MMP-2 activity and endothelial tube formation suggesting involvement of PGE2 in regulation of MMP-2 activity during angiogenesis. Moreover, specific inhibition of MMP-2 by chemical inhibitor significantly reduced cellular migration, invasion and tube formation. In ovo assay showed decreased angiogenic branching upon MMP-2 inhibition. Furthermore, a significant reduction of lesion numbers was observed upon inhibition of MMP-2 and COX-2 in mouse model of endometriosis. In conclusion, our study establishes the involvement of MMP-2 activity via COX-2-PGE2-pAKT axis in promoting angiogenesis during endometriosis progression.
Endometriosis, characterized by extrauterine development of endometrial glands and stroma, is associated with increased risk of ovarian cancer development. In the present study, we investigated the role of matrix metalloproteinase-7 (MMP-7) on epithelial-mesenchymal transition (EMT) during ovarian endometriosis ( N = 40) progression. We found that the expressions of EMT markers such as vimentin, slug, and N-cadherin were significantly elevated in late stages of ovarian endometriosis compared with those found in early stages. In addition, the activity and expression of ectopic MMP-7 were significantly higher in the late stages of endometriosis. In vitro studies revealed that increased expression of MMP-7 as well as epidermal growth factor (EGF), which was significantly elevated in severe stages of ovarian endometriosis, induced EMT in endocervical epithelial cells (End1/E6E7). Silencing the MMP-7 transcripts using small interfering RNA attenuated EMT responses, whereas treatment with recombinant active MMP-7 promoted EMT by cleaving E-cadherin. In addition, EGF receptor (EGFR) inhibitor treatments regressed endometriotic lesions and decreased MMP-7 activities in a mouse model of endometriosis. Chromatin immunoprecipitation assay identified EGFR-mediated ERK1 and activator protein 1 signaling for the transcriptional activation of MMP-7 in End1/E6E7 epithelial cells.-Chatterjee, K., Jana, S., DasMahapatra, P., Swarnakar, S. EGFR-mediated matrix metalloproteinase-7 up-regulation promotes epithelial-mesenchymal transition via ERK1-AP1 axis during ovarian endometriosis progression.
Cancer development and metastasis are associated to perturbation in metabolic functions of tumor cells and surrounding inflammatory and stromal cell responses. Eicosanoids and lipid mediators, in this regard, attract potential attention during cancer development. Eicosanoids, which include prostaglandin, prostacyclin, thromboxane, and leukotriene, are synthesized from arachidonic acid when cells are stimulated by stress, cytokines, or other growth factors. However, the underlying mechanism of eicosanoids in cancer development, specially their interactions with proto-oncogene factors in tumor microenvironment, remain unexplored. On the other hand, matrix metalloproteinases (MMPs) are a group of zinc-dependent endopeptidases which are involved in degradation of different extracellular matrix (ECM) proteins. MMPs are associated with different physiological responses, including embryogenesis, vasculogenesis, and cellular remodeling, as well as different disease pathogenesis. Induced MMP responses are especially associated with cancer metastasis and secondary tumor development through proteolytic cleavage of several ECM and non-ECM proteins. Although both eicosanoids and MMPs are involved with cancer progression and metastasis, the interrelation between these two molecules are less explored. The present review discusses relevant studies that connect eicosanoids and MMPs and highlight the crosstalk between them offering novel therapeutic approach in cancer treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.