Abstract. We present a fully automatic 3D segmentation method for the left ventricle (LV) in human myocardial perfusion SPECT data. This model-based approach consists of 3 phases: 1. nding the LV in the dataset, 2. extracting its approximate shape and 3. segmenting its exact contour. Finding of the LV is done by exible pattern matching, whereas segmentation is achieved by registering an anatomical model to the functional data. This model is a new kind of stable 3D mass spring model using direction-weighted 3D contour sensors. Our approach is much faster than manual segmention, which is standard in this application up to now. By testing it on 41 LV SPECT datasets of mostly pathological data, we could show, that it is very robust and its results are comparable with those made by human experts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.