Complex spatial and temporal regulation of gene activity is fundamental to development and homeostasis. The ability to decipher the DNA sequences that accurately coordinate gene expression is, therefore, of primary importance. One way to assess the functions of DNA elements entails their fusion to fluorescent reporter genes. This powerful approach makes it possible to visualize their regulatory capabilities when reintroduced into the developing animal. Transgenic studies in Drosophila have recently advanced with the introduction of site-specific, ΦC31 integrase–mediated approaches. However, most existing Drosophila reporter vectors are not compatible with this new approach and have become obsolete. Here we describe a new series of fluorescent reporter vectors optimized for use with ΦC31 transgenesis. By using these vectors to generate a set of Notch reporter fly lines, we demonstrate their efficacy in reporting the function of gene regulatory elements.
Repressors are frequently deployed to limit the transcriptional response to signalling pathways. For example, several co-repressors interact directly with the DNA-binding protein CSL and are proposed to keep target genes silenced in the absence of Notch activity. However, the scope of their contributions remains unclear. To investigate co-repressor activity in the context of this well defined signalling pathway, we have analysed the genome-wide binding profile of the best-characterized CSL co-repressor in Drosophila, Hairless, and of a second CSL interacting repressor, SMRTER. As predicted there was significant overlap between Hairless and its CSL DNA-binding partner, both in Kc cells and in wing discs, where they were predominantly found in chromatin with active enhancer marks. However, while the Hairless complex was widely present at some Notch regulated enhancers in the wing disc, no binding was detected at others, indicating that it is not essential for silencing per se. Further analysis of target enhancers confirmed differential requirements for Hairless. SMRTER binding significantly overlapped with Hairless, rather than complementing it, and many enhancers were apparently co-bound by both factors. Our analysis indicates that the actions of Hairless and SMRTER gate enhancers to Notch activity and to Ecdysone signalling respectively, to ensure that the appropriate levels and timing of target gene expression are achieved.
There is growing evidence that Notch pathway activation can result in consequences on cell morphogenesis and behaviour, both during embryonic development and cancer progression. In general, Notch is proposed to co-ordinate these processes by regulating expression of key transcription factors. However, many Notch-regulated genes identified in genome-wide studies are involved in fundamental aspects of cell behaviour, suggesting a more direct influence on cellular properties. By testing the functions of 25 such genes we confirmed that 12 are required in developing adult muscles consistent with roles downstream of Notch. Focusing on three, Reck, rhea/talin and trio, we verify their expression in adult muscle progenitors and identify Notch-regulated enhancers in each. Full activity of these enhancers requires functional binding sites for Su(H), the DNA-binding transcription factor in the Notch pathway, validating their direct regulation. Thus, besides its well-known roles in regulating the expression of cell-fate determining transcription factors, Notch signalling also has the potential to directly affect cell morphology/behaviour by modulating expression of genes such as Reck, rhea/talin and trio. This sheds new light on functional outputs of Notch activation in morphogenetic processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.