The one-electron reduction of methanesulfonyl chloride (MeSO2Cl) leads, in the first instance, to an electron adduct MeSO2Cl(.)(-) which lives long enough for direct detection and decays into sulfonyl radicals MeSO2(.) and Cl(-), with k = 1.5 x 10(6) s(-1). Both, MeSO2Cl(.)(-) and MeSO2(.) showed a similar absorption in the UV with lambdamax of 320 nm. In the presence of oxygen, MeSO2Cl(.)(-) transfers an electron to O(2) and establishes an equilibrium with superoxide. The rate constant for the forward reaction was measured to 4.1 x 10(9) M(-1) s(-1), while for the back reaction only an interval of 1.7 x 10(5) to 1.7 x 10(6) M(-1) s(-1) could be estimated, with a somewhat higher degree of confidence for the lower value. This corresponds to an equilibrium constant in the range of 2.4 x 10(3) to 2.4 x 10(4). With reference to E degrees (O2/O2(.)(-)) = -155 mV, the redox potential of the sulfonyl chloride couple, E degrees (MeSO2Cl/MeSO2Cl(.)(-)), thus results between being equal to -355 and -414 mV (vs NHE). MeSO2Cl(.)(-) reduces (besides O2) 4-nitroacetophenone. The underlying electron transfer took place with k = 1.5 x 10(9) M(-1) s(-1), corroborating an E degrees for the sulfonyl chloride couple significantly exceeding the above listed lower value. The MeSO2(.) radical added to oxygen with a rate constant of 1.1 x 10(9) M(-1) s(-1). Re-dissociation of O2 from MeSO2OO(.) occurred only very slowly, if at all, that is, with k << 10(5) s(-1). MeSO2(.) radicals can act as the catalyst for the cis-trans isomerization of several Z- and E-mono-unsaturated fatty acid methyl esters in homogeneous solution. The effectiveness of the isomerization processes has been addressed, and in the presence of oxygen the isomerization is completely suppressed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.