BackgroundDetermination of methylated Septin 9 (mSEPT9) in plasma has been shown to be a sensitive and specific biomarker for colorectal cancer (CRC). However, the relationship between methylated DNA in plasma and colon tissue of the same subjects has not been reported.MethodsPlasma and matching biopsy samples were collected from 24 patients with no evidence of disease (NED), 26 patients with adenoma and 34 patients with CRC. Following bisulfite conversion of DNA a commercial RT-PCR assay was used to determine the total amount of DNA in each sample and the fraction of mSEPT9 DNA. The Septin-9 protein was assessed using immunohistochemistry.ResultsThe percent of methylated reference (PMR) values for SEPT9 above a PMR threshold of 1% were detected in 4.2% (1/24) of NED, 100% (26/26) of adenoma and 97.1% (33/34) of CRC tissues. PMR differences between NED vs. adenoma and NED vs. CRC comparisons were significant (p<0.001). In matching plasma samples using a PMR cut-off level of 0.01%, SEPT9 methylation was 8.3% (2/24) of NED, 30.8% (8/26) of adenoma and 88.2% (30/34) of CRC. Significant PMR differences were observed between NED vs. CRC (p<0.01) and adenoma vs. CRC (p<0.01). Significant differences (p<0.01) were found in the amount of cfDNA (circulating cell-free DNA) between NED and CRC, and a modest correlation was observed between mSEPT9 concentration and cfDNA of cancer (R2 = 0.48). The level of Septin-9 protein in tissues was inversely correlated to mSEPT9 levels with abundant expression in normals, and diminished expression in adenomas and tumors.ConclusionsMethylated SEPT9 was detected in all tissue samples. In plasma samples, elevated mSEPT9 values were detected in CRC, but not in adenomas. Tissue levels of mSEPT9 alone are not sufficient to predict mSEPT9 levels in plasma. Additional parameters including the amount of cfDNA in plasma appear to also play a role.
Colorectal cancer is one of the leading death causes in the world. Specificity and sensitivity of the present screening methods are unsuitable and their compliance is too low. Nowadays the most effective method is the colonoscopy, because it gives not only macroscopic diagnosis but therapeutic possibility as well, however the compliance of the patients is very low. Hence development of new diagnostic methods is needed. Altered expression of septin 9 was found in several tumor types including colorectal cancer. The aim of this study was to detect the methylation related mRNA and protein expression changes of septin 9 in colorectal adenoma-dysplasia-carcinoma sequence and to analyze its reversibility by demethylation treatment. Septin 9 protein expression showed significant difference between normal and colorectal cancer (CRC) samples (p < 0,001). According to biopsy microarray results, septin 9 mRNA expression decreased in the progression of colon neoplastic disease (p < 0,001). In laser microdissected epithelial cells, septin 9 significantly underexpressed in CRC compared to healthy controls (p < 0,001). The expression of septin9_v1 region was higher in the healthy samples, while septin9_v2, v4, v4*, v5 overexpression were detected in cancer epithelial cells compared to normal. The septin 9 mRNA and protein levels of HT29 cells increased after demethylation treatment. The increasing methylation of septin 9 gene during colorectal adenoma-dysplasia-carcinoma sequence progression is reflected in the decreasing mRNA and protein expression, especially in the epithelium. These changes can be reversed by demethylation agents converting this screening marker gene into therapeutic target.
BackgroundThe early molecular detection of the dysplasia-carcinoma transition may enhance the strength of diagnosis in the case of colonic biopsies. Our aims were to identify characteristic transcript sets in order to develop diagnostic mRNA expression patterns for objective classification of benign and malignant colorectal diseases and to test the classificatory power of these markers on an independent sample set.Methodology/Principal FindingsColorectal cancer (CRC) and adenoma specific transcript sets were identified using HGU133plus2 microarrays and 53 biopsies (22 CRC, 20 adenoma and 11 normal). Ninety-four independent biopsies (27 CRC, 29 adenoma and 38 normal) were analyzed on microarrays for testing the classificatory power of the discriminatory genes. Array real-time PCR validation was done on 68 independent samples (24 CRC, 24 adenoma and 20 normal). A set of 11 transcripts (including CXCL1, CHI3L1 and GREM1) was determined which could correctly discriminate between high-grade dysplastic adenoma and CRC samples by 100% sensitivity and 88.9% specificity. The discriminatory power of the marker set was proved to be high on independent samples in both microarray and RT-PCR analyses. 95.6% of original and 94.1% of cross-validated samples was correctly classified in discriminant analysis.Conclusions/SignificanceThe identified transcripts could correctly characterize the dysplasia-carcinoma transition in biopsy samples, also on a large independent sample set. These markers can establish the basis of gene expression based diagnostic classification of colorectal cancer. Diagnostic RT-PCR cards can become part of the automated routine procedure.
Microarray analysis of promoter hypermethylation provides insight into the role and extent of DNA methylation in the development of colorectal cancer (CRC) and may be co-monitored with the appearance of driver mutations. Colonic biopsy samples were obtained endoscopically from 10 normal, 23 adenoma (17 low-grade (LGD) and 6 high-grade dysplasia (HGD)), and 8 ulcerative colitis (UC) patients (4 active and 4 inactive). CRC samples were obtained from 24 patients (17 primary, 7 metastatic (MCRC)), 7 of them with synchronous LGD. Field effects were analyzed in tissues 1 cm (n = 5) and 10 cm (n = 5) from the margin of CRC. Tissue materials were studied for DNA methylation status using a 96 gene panel and for KRAS and BRAF mutations. Expression levels were assayed using whole genomic mRNA arrays. SFRP1 was further examined by immunohistochemistry. HT29 cells were treated with 5-aza-2’ deoxycytidine to analyze the reversal possibility of DNA methylation. More than 85% of tumor samples showed hypermethylation in 10 genes (SFRP1, SST, BNC1, MAL, SLIT2, SFRP2, SLIT3, ALDH1A3, TMEFF2, WIF1), whereas the frequency of examined mutations were below 25%. These genes distinguished precancerous and cancerous lesions from inflamed and healthy tissue. The mRNA alterations that might be caused by systematic methylation could be partly reversed by demethylation treatment. Systematic changes in methylation patterns were observed early in CRC carcinogenesis, occuring in precursor lesions and CRC. Thus we conclude that DNA hypermethylation is an early and systematic event in colorectal carcinogenesis, and it could be potentially reversed by systematic demethylation therapy, but it would need more in vitro and in vivo experiments to support this theory.
BackgroundSomatostatin (SST) has anti-proliferative and pro-apoptotic effects. Our aims were to analyze and compare the SST expression during normal aging and colorectal carcinogenesis at mRNA and protein levels. Furthermore, we tested the methylation status of SST in biopsy samples, and the cell growth inhibitory effect of the SST analogue octreotide in human colorectal adenocarcinoma cell line.MethodsColonic samples were collected from healthy children (n1 = 6), healthy adults (n2 = 41) and colorectal cancer patients (CRCs) (n3 = 34) for SST mRNA expression analysis, using HGU133 Plus2.0 microarrays. Results were validated both on original (n1 = 6; n2 = 6; n3 = 6) and independent samples ((n1 = 6; n2 = 6; n3 = 6) by real-time PCR. SST expressing cells were detected by immunohistochemistry on colonic biopsy samples (n1 = 14; n2 = 20; n3 = 23). The effect of octreotide on cell growth was tested on Caco-2 cell line. SST methylation percentage in biopsy samples (n1 = 5; n2 = 5; n3 = 9) was defined using methylation-sensitive restriction enzyme digestion.ResultsIn case of normal aging SST mRNA expression did not alter, but decreased in cancer (p<0.05). The ratio of SST immunoreactive cells was significantly higher in children (0.70%±0.79%) compared to CRC (0%±0%) (p<0.05). Octreotide significantly increased the proportion of apoptotic Caco-2 cells. SST showed significantly higher methylation level in tumor samples (30.2%±11.6%) compared to healthy young individuals (3.5%±1.9%) (p<0.05).ConclusionsIn cancerous colonic mucosa the reduced SST production may contribute to the uncontrolled cell proliferation. Our observation that in colon cancer cells octreotide significantly enhanced cell death and attenuated cell proliferation suggests that SST may act as a regulator of epithelial cell kinetics. The inhibition of SST expression in CRC can be epigenetically regulated by promoter hypermethylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.