Abstract:Massive evaporites were discovered in the Soltvadkert Trough (Great Plain, Hungary) correlating to the Badenian Salinity Crisis (13.8 Ma, Middle Miocene) on the basis of nannoplankton and foraminifera biostratigraphy. This new occurrence from Hungary previously thought to be devoid of evaporites is part of a growing body of evidence of evaporitic basins inside the Carpathian Arc. We suggest the presence of evaporites perhaps in the entire Central Paratethys during the salinity crisis. Different scenarios are suggested for what subsequently happened to these evaporites to explain their presence or absence in the geological record. Where they are present, scenario A suggests that they were preserved in subsiding, deep basins overlain by younger sediments that protected the evaporites from reworking, like in the studied area. Where they are absent, scenario B suggests recycling. Scenario B explains how the supposedly brackish Sarmatian could have been hyper/normal saline locally by providing a source of the excess salt from the reworking and dissolving of BSC halite into seawater. These scenarios suggest a much larger amount of evaporites locked up in the Central Paratethys during the salinity crisis then previously thought, probably contributing to the step-like nature of cooling of the Mid Miocene Climate Transition, the coeval Mi3b.
The role of the Middle-Upper Miocene source rocks in the Late Neogene petroleum system of the Pannonian Basin is undoubtedly significant, but it is not entirely understood. Only a few general publications exist that describe these sediments and their importance. We have focused on understanding the Neogene tectono-stratigraphic development and petroleum systems of these relatively small syn-rift grabens in southern Hungary. We have developed a workflow for organic geochemical, seismic, and facies interpretation; basin subsidence; and 3D basin modeling to better understand the Miocene-Pliocene-age petroleum system in a [Formula: see text] study area. This area fully covers two small-scale (less than [Formula: see text] size each) troughs filled by syn-rift and postrift deposits in large thickness with significantly different structural histories. During our investigation, six source rock beds were identified and built into the model. Thousands of meters of Lower Miocene, (Karpatian age) sediment accumulated in a “pull-apart,” but later structurally inverted Kiskunhalas Trough in the south, where four moderate- to good-quality (2 wt% estimated original total organic carbon [TOC], 200 HI), dominantly gas-prone, immature to wet gas mature source rock beds were identified. In the overlying Middle Miocene (Badenian age) sediments, generally good quality (2 wt% estimated original [TOC], 300–500 HI, type II and II-S), oil-prone, dominantly oil mature source bed was identified. This layer, as the regional Miocene source rock, is mainly responsible for the known hydrocarbon (HC) accumulations. The 3D basin and petroleum system modeling helped us understand the HC migration into the already-discovered fields as well as identify possible future exploration objects.
Jelen tanulmány a hazai agrár-munkaerőpiacon és agrárszakképzésben jelentkező főbb folyamatokat mutatja be az elérhető statisztikai adatok, továbbá az Agrárminisztérium és a Nemzeti Agrárgazdasági Kamara támogatásával az Agrárközgazdasági Intézet által elvégzett munkaerőpiaci és tanulói felmérések alapján.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.