In this study, relationships between preparation conditions, structure, and activity of Pt-containing TiO2 photocatalysts in photoinduced reforming of glycerol for H2 production were explored. Commercial Aerolyst® TiO2 (P25) and homemade TiO2 prepared by precipitation-aging method were used as semiconductors. Pt co-catalysts were prepared by incipient wetness impregnation from aqueous solution of Pt(NH3)4(NO3)2 and activated by calcination, high temperature hydrogen, or nitrogen treatments. The chemico-physical and structural properties were evaluated by XRD, 1H MAS NMR, ESR, XPS, TG-MS and TEM. The highest H2 evolution rate was observed over P25 based samples and the H2 treatment resulted in more active samples than the other co-catalyst formation methods. In all calcined samples, reduction of Pt occurred during the photocatalytic reaction. Platinum was more easily reducible in all of the P25 supported samples compared to those obtained from the more water-retentive homemade TiO2. This result was related to the negative effect of the adsorbed water content of the homemade TiO2 on Pt reduction and on particle growth during co-catalyst formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.