Stem cells reside in customized microenvironments (niches) that contribute to their unique ability to divide asymmetrically to give rise to self and to a daughter cell with distinct properties. Notch receptors and their ligands are highly conserved and have been shown to regulate cell-fate decisions in multiple developmental systems through local cell interactions. To assess whether Notch signaling may regulate hematopoiesis to maintain cells in an immature state, we examined the functional role of the recombinant, secreted form of the Notch ligand Jagged-1 during mouse hematopoietic stem cell (HSC) and progenitor cell proliferation and maturation. We found that ligand immobilization on stromal layer or on Sepharose-4B beads is required for the induction of self-renewing divisions of days 28-35 cobblestone area-forming cell. The free, soluble Jagged-1, however, has a dominant-negative effect on self-renewal in the stem-cell compartment. In contrast, free as well as immobilized Jagged-1 promotes growth factor-induced colony formation of committed hematopoietic progenitor cells. Therefore, we propose that differences in Jagged-1 presentation and developmental stage of the Notch receptor-bearing cells influence Notch ligand-binding results toward activation or inhibition of downstream signaling. Moreover, these results suggest potential clinical use of recombinant Notch ligands for expanding human HSC populations in vitro.
Myelodysplastic syndromes (MDSs) are a heterogeneous group of hematological disorders characterized by ineffective hematopoiesis, enhanced bone marrow apoptosis and frequent progression to acute myeloid leukemia. Several recent studies suggested that, besides the abnormal development of stem cells, microenvironmental alterations are also present in the MDS bone marrow. In this study, we have examined the relative frequencies of stem and progenitor cell subsets of MDS and normal hematopoietic cells growing on stromal cell layers established from MDS patients and from normal donors. When hematopoietic cells from MDS patients were co-cultured with normal stromal cells, the frequency of either early or late cobblestone area-forming cells (CAFC) was significantly lower compared to the corresponding normal control values in 4 out of 8 patients. In the opposite situation, when normal hematopoietic cells were incubated on MDS stromal cells, the CAFC frequencies were decreased in 5 out of 6 patients, compared to normal stromal layer-containing control cultures. Moreover, a soluble Notch ligand (Jagged-1 protein) was an inhibitor of day-35-42 CAFC when normal hematopoietic cells were cultured with normal or MDS stromal cells, but was unable to inhibit MDS stem and early progenitor cell growth (day-35-42 CAFC) on pre-established stromal layers. These findings suggest that in early hematopoietic cells isolated from MDS patients the Notch signal transduction pathway is disrupted. Furthermore, there was a marked reduction in the plasticity of mesenchymal stem cells of MDS patients compared with those of normal marrow donors, in neurogenic and adipogenic differentiation ability and hematopoiesis supporting capacity in vitro. These results are consistent with the hypothesis that when alterations are present in the myelodysplastic stroma environment along with intrinsic changes in a hematopoietic stem/progenitor cell clone, both factors might equally contribute to the abnormal hematopoiesis in MDS.
The malignant cells proved to express CD4+, CD56+ lineage negative leukemia phenotype characteristically positive for CD36, CD38, CD40, CD45, CD45RA, CD68, CD123, CD184, HLA-DR, BDCA2, and granzyme-B corresponding to the preplasmacytoid dendritic cell developmental stage. The presence of CD11a/CD18, CD84, CD91, CD95, alphavbeta5, CDw197, and the absence of CD52 and CD133 in this case can be regarded as additional features of malignant cells. Completing the immunophenotypes with multidrug resistance function can provide additional information for characterizing pDC leukemia.
Cord blood (CB) as a new source for bone marrow transplantation represents advantageous features concerning stem cell and leucocyte compartments and function. We attempted to get more information about the phenotypes and function of CB cells by investigating their cell surface markers and also the production of IL-2, IFN-gamma and IL-6 by mitogen and alloantigen stimulation. The CB cells were characterized by a low proportion of CD3+ T cells, CD4+ T subpopulation, activated T cells and CD3+CD16/CD56+ cytotoxic cells, suggesting reduced graft versus host potential. The significant increase of CD19/CD3 double positive cells and decrease of CD19/HLA-DR double positive mature B cells reflect that immature B cells exist in CB. In the functional studies, a 27- and 5-fold reduction was observed in the production of IFN-gamma by CB cells stimulated with PHA and allogeneic cells, respectively. The production of IL-2 in PHA-stimulated CB cells also showed a 50% determination. Decrease in the production of these cytokines by CB cells is supported by the decline of the proportion of CD3+ T cells. However, an increase was observed in the production of IL-6 by CB cells stimulated with allogeneic cells as compared with the controls. These results suggest a difference in the functional activity of the T helper cell subsets between the CB and peripheral blood and/or differences in the functional maturity of T helper cell subsets and B cells in these compartments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.