Protected areas (PAs) are the cornerstones of global biodiversity conservation efforts, but to fulfil this role they must be effective at conserving both habitat and species. Among protected taxa, freshwater fish are exposed to multiple disturbances and are considered one of the most endangered. The Natura 2000 reserves network was established with the aim of preserving biodiversity across Europe, but few assessments have been made on its effectiveness on the conservation of freshwater fish species. We tested the hypothesis that fish community is exposed to less anthropogenic pressures within the Natura 2000 sites than outside, hosting a higher number of native species and maintain lower number of non-native species. We tested these hypotheses considering 3,777 sampling sites, found across the entire Italian territory. Results showed that PAs did not guarantee less anthropogenic impacts and higher fish species richness than outside PAs, suggesting that PAs are not a panacea for anthropogenic pressures and safeguarding fish diversity. Nevertheless, more caution should be applied to the management measures and the design of new PAs due to the limitations of the protection of a single stretch within a whole river ecosystem. Moreover, the impossibility to operate any management of invasive fish species on the broad scale of a whole river basin is likely the most limiting factor to fish biodiversity conservation in Italy. Finally, it is also necessary to extend the analysis to other basins and Natura 2000 sites in Europe.
Networks of trophic interactions provide a lot of information on the functioning of marine ecosystems. Beyond feeding habits, three additional traits (mobility, size, and habitat) of various organisms can complement this trophic view. The combination of traits and food web positions are studied here on a large food web database. The aim is a better description and understanding of ecological roles of organisms and the identification of the most important keystone species. This may contribute to develop better ecological indicators (e.g., keystoneness) and help in the interpretation of food web models. We use food web data from the Ecopath with Ecosim (EwE) database for 92 aquatic ecosystems. We quantify the network position of organisms by 18 topological indices (measuring centrality, hierarchy, and redundancy) and consider their three, categorical traits (e.g., for mobility: sessile, drifter, limited mobility, and mobile). Relationships are revealed by multivariate analysis. We found that topological indices belong to six different categories and some of them nicely separate various trait categories. For example, benthic organisms are richly connected and mobile organisms occupy higher food web positions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.