Substantial evidence now exists that intrinsic free-radical scavenging contributes to the receptor-independent neuroprotective effects of estrogens. This activity is inherently associated with the presence of a phenolic A-ring in the steroid. We report a previously unrecognized antioxidant cycle that maintains the ''chemical shield'' raised by estrogens against the most harmful reactive oxygen species, the hydroxyl radical ( • OH) produced by the Fenton reaction. In this cycle, the capture of • OH was shown to produce a nonphenolic quinol with no affinity to the estrogen receptors. This quinol is then rapidly converted back to the parent estrogen via an enzyme-catalyzed reduction by using NAD(P)H as a coenzyme (reductant) and, unlike redox cycling of catechol estrogens, without the production of reactive oxygen species. Due to this process, protection of neuronal cells against oxidative stress is also possible by quinols that essentially act as prodrugs for the active hormone. We have shown that the quinol obtained from a 17-estradiol derivative was, indeed, able to attenuate glutamate-induced oxidative stress in cultured hippocampus-derived HT-22 cells. Estrone quinol was also equipotent with its parent estrogen in reducing lesion volume in ovariectomized rats after transient middle carotid artery occlusion followed by a 24-h reperfusion. These findings may establish the foundation for a rational design of neuroprotective antioxidants focusing on steroidal quinols as unique molecular leads.hydroxyl radical ͉ ischemia ͉ prodrug
Many neurological and psychiatric maladies originate from the deprivation of the human brain from estrogens. However, current hormone therapies cannot be used safely to treat these conditions commonly associated with menopause because of detrimental side-effects in the periphery. The latter also prevents the use of the hormone for neuroprotection. Here we show that a small-molecule bioprecursor prodrug, 10β,17β-dihydroxyestra-1,4-dien-3-one (DHED), converts to 17β-estradiol in the brain after systemic administration, but remains inert in the rest of the body. The localized and rapid formation of estrogen from the prodrug was revealed by a series of in vivo bioanalytical assays and through in vivo imaging in rodents. DHED treatment efficiently alleviated symptoms originated from brain estrogen deficiency in animal models of surgical menopause and provided neuroprotection in a rat stroke model. Concomitantly, we determined that 17β-estradiol formed in the brain from DHED elicited changes in gene expression and neuronal morphology identical to those obtained after direct 17β-estradiol treatment. Altogether, complementary functional and mechanistic data show that our approach is highly relevant therapeutically, because administration of the prodrug selectively produces estrogen in the brain independently from the route of administration and treatment regimen. Therefore, peripheral responses associated with the use of systemic estrogens, such as stimulation of the uterus and estrogen-responsive tumor growth, were absent. Collectively, our brain-selective prodrug approach may safely provide estrogen neuroprotection and medicate neurological and psychiatric symptoms developing from estrogen deficiency, particularly those encountered after surgical menopause, without the adverse side-effects of current hormone therapies.
Neuroprotection in glaucoma as a curative strategy complementary to current therapies to lower intraocular pressure (IOP) is highly desirable. This study was designed to investigate neuroprotection by 17β-estradiol (E2) to prevent retinal ganglion cell (RGC) death in a glaucoma model of surgically elevated IOP in rats. We found that daily treatment with E2 containing eye drops resulted in significant E2 concentration in the retina with concomitant profound neuroprotective therapeutic benefits, even in the presence of continually elevated IOP. The number of apoptotic cells in the RGC layer was significantly decreased in the E2-treated group, when compared to the vehicle-treated controls. Deterioration in visual acuity in these animals was also markedly prevented. Using mass spectrometry-based proteomics, beneficial changes in the expression of several proteins implicated in the maintenance of retinal health were also found in the retina of E2-treated animals. On the other hand, systemic side-effects could not be avoided with the eye drops, as confirmed by the measured high circulating estrogen levels and through the assessment of the uterus representing a typical hormone-sensitive peripheral organ. Collectively, the demonstrated significant neuroprotective effect of topical E2 in the selected animal model of glaucoma provides a clear rationale for further studies aiming at targeting E2 into the eye while avoiding systemic E2 exposure to diminish undesirable off target side-effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.