We demonstrate for the first time the viability of a three-dimensional (3D) elemental imaging technique based on Neutron Resonance Transmission Imaging (NRTI), which is a neutron technique based on the presence of a resonance structure in the neutron-induced reaction cross sections. These resonances allow the identification of elements and isotopes within an object in a non-destructive manner. A dedicated set-up on the INES (Italian Neutron Experimental Station) beamline of the ISIS spallation neutron source was employed for the experiments. An early mediaeval disc fibula from the Hungarian National Museum in Budapest was used for our demonstration. The methodology and analysis procedures are described and the results obtained from the reconstruction of the 3D NRTI elemental image of the ancient object are compared with the results obtained from other neutron-based 3D imaging techniques
Bimoclomol (BML), a symptomatic antidiabetic agent, has been developed by Biorex R & D Co. to treat diabetic neuropathy and retinopathy. BRX‐220, an orally active member of the BRX family, has been developed to treat diabetic complications and insulin resistance (IR) as a follow‐up compound. The effect of BRX‐220 on peripheral neuropathy was examined in rats with diabetes (type 1) induced by administration of a β‐cell toxin, streptozotocin (STZ, 45 mg/kg iv). Nerve functions were evaluated by electrophysiological measurements of muscle motor and sensory nerve conduction velocities (MNCV and SNCV, respectively). MNCV and SNCV decreased in diabetic rats by 25% (p < 0.001). A 1‐month preventive treatment with BRX‐220 (2.5, 5, 10, and 20 mg/kg po) dose‐dependently improved diabetes‐related deficits in MNCV (51.3%, 71.3%, 86.1%, and 91.3%) and SNCV (48.9%, 68.5%, 86.1%, and 93.2%). Insulin sensitivity was measured using the insulin tolerance test (ITT), both in STZ diabetic and in Zucker diabetic fatty (ZDF) rats (model of type 2 diabetes). Severe IR was detected in STZ diabetic and ZDF rats. This resistance was significantly (p < 0.05) reduced by BRX‐220 treatment.
Recently, several archaeometrical projects have been started on the prehistoric collection of the Hungarian National Museum. Among the analytical methods applied, non-destructive prompt gamma activation analysis has a special importance. We have also tested the potential of this method on chipped stone tools, with the aim of determining their exact provenance. On the basis of major and trace element components, characterizations of stone tools and their raw materials-silicites ( flint, chert, radiolarite and hornstone) as well as volcanites (felsitic porphyry and obsidian)-were performed. We discuss some important results concerning each group, as case studies. Compiling the data set of different PGAA analysis series, compositions of 110 samples are reported, including 76 archaeological pieces. In the future, we plan to extend the number of investigated objects in each class.
Neutron resonances are the signature signals of a non-destructive elemental and isotopic analysis technique in archaeological sciences. We report on Neutron Resonance Transmission Analysis and its capabilities as a bulk elemental imaging technique to test the homogeneity of samples and to localize elements of interest in archaeological samples and museum objects. A high neutron flux is required for imaging in order to achieve reasonable spatial resolution and to keep measurement times within realistic limits. A modular system for neutron resonance transmission analysis has been designed and installed at the INES beamline of the ISIS spallation neutron source as a part of the ANCIENT CHARM project. The main component is a neutron position sensitive transmission detector which is based on a 10 × 10 array of 6Li-glass crystals mounted on a pitch of 2.5 mm, resulting in a 25 × 25 mm2 active area. Transmission spectra are obtained by a measurement of the flight time of epithermal neutrons passing through an object. The transmission dips observed in a time-of-flight spectrum can be used to identify and quantify specific nuclides. In this paper the technique is described together with the data reduction and analysis procedures. In addition, preliminary results obtained from measurements on cultural heritage samples are discussed
Calcium and osmolality level were associated with outcome in sepsis. Whole blood viscosity, red blood cell aggregation and change in red blood cell deformability could predict mortality in nonseptic patients and they may add prognostic information over the ICU scores. Further investigations are needed to evaluate the benefit of our findings in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.