Magnetic hyperthermia, or the heating of tissues using magnetic materials, is a promising approach for treating cancer. We found that human mesenchymal stem cells (MSCs) isolated from various tissues and MSCs expressing the yeast cytosine deaminase∷uracil phosphoribosyl transferase suicide fusion gene ( yCD∷UPRT ) can be labeled with Venofer, an iron oxide carbohydrate nanoparticle. Venofer labeling did not affect cell proliferation or the ability to home to tumors. All Venofer-labeled MSCs released exosomes that contained iron oxide. Furthermore, these exosomes were efficiently endocytosed by tumor cells. Exosomes from Venofer-labeled MSCs expressing the yCD∷UPRT gene in the presence of the prodrug 5-fluorocytosine inhibited tumor growth in a dose-dependent fashion. The treated tumor cells were also effectively ablated following induction of hyperthermia using an external alternating magnetic field. Cumulatively, we found that magnetic nanoparticles packaged into MSC exosomes are efficiently endocytosed by tumor cells, facilitating targeted tumor cell ablation via magnetically induced hyperthermia.
The natural behavior of mesenchymal stem cells (MSCs) and their exosomes in targeting tumors is a promising approach for curative therapy. Human tumor tropic mesenchymal stem cells (MSCs) isolated from various tissues and MSCs engineered to express the yeast cytosine deaminase::uracil phosphoribosyl transferase suicide fusion gene (yCD::UPRT-MSCs) released exosomes in conditional medium (CM). Exosomes from all tissue specific yCD::UPRT-MSCs contained mRNA of the suicide gene in the exosome's cargo. When the CM was applied to tumor cells, the exosomes were internalized by recipient tumor cells and in the presence of the prodrug 5-fluorocytosine (5-FC) effectively triggered dose-dependent tumor cell death by endocytosed exosomes via an intracellular conversion of the prodrug 5-FC to 5-fluorouracil. Exosomes were found to be responsible for the tumor inhibitory activity. The presence of microRNAs in exosomes produced from naive MSCs and from suicide gene transduced MSCs did not differ significantly. MicroRNAs from yCD::UPRT-MSCs were not associated with therapeutic effect. MSC suicide gene exosomes represent a new class of tumor cell targeting drug acting intracellular with curative potential.
We report on a simple iron oxide (Venofer) labeling procedure of dental pulp mesenchymal stem cells (DP-MSCs) and DP-MSCs transduced with yeast cytosinedeaminase::uracilphosphoribosyltransferase (yCD::UPRT-DP-MSCs). Venofer is a drug approved for intravenous application to treat iron deficiency anemia in patients. Venofer labeling did not affect DP-MSCs or yCD::UPRT-DP-MSCs viability and growth kinetics. Electron microscopy of labeled cells showed internalized Venofer nanoparticles in endosomes. MRI relativity measurement of Venofer labeled DP-MSCs in a phantom arrangement revealed that 100 cells per 0.1 ml were still detectable. DP-MSCs or yCD::UPRT-DP-MSCs and the corresponding Venofer labeled cells release exosomes into conditional medium (CM). CM from yCD::UPRT-DP-MSCs in the presence of a prodrug 5-fluorocytosine caused tumor cell death in a dose dependent manner. Iron labeled DP-MSCs or yCD::UPRT-DP-MSCs sustained their tumor tropism in vivo; intra-nasally applied cells migrated and specifically engrafted orthotopic glioblastoma xenografts in rats.
Recently, we reported about exosomes possessing messenger RNA (mRNA) of suicide gene secreted from mesenchymal stem/stromal cells (MSCs) engineered to express the suicide gene-fused yeast cytosine deaminase::uracil phospho-ribosyltransferase (yCD::UPRT). The yCD::UPRT-MSC exosomes are internalized by tumor cells and intracellularly convert prodrug 5-fluorocytosine (5-FC) to cytotoxic drug 5-fluorouracil (5-FU). Human tumor cells with the potential to metastasize release exosomes involved in the creation of a premetastatic niche at the predicted organs. We found that cancer cells stably transduced with yCD::UPRT gene by retrovirus infection released exosomes acting similarly like yCD::UPRT-MSC exosomes. Different types of tumor cells were transduced with the yCD::UPRT gene. The homogenous cell population of yCD::UPRT-transduced tumor cells expressed the yCD::UPRT suicide gene and secreted continuously exosomes with suicide gene mRNA in their cargo. All tumor cell suicide gene exosomes upon internalization into the recipient tumor cells induced the cell death by intracellular conversion of 5-FC to 5-FU and to 5-FUMP in a dosedependent manner. Most of tumor cell-derived suicide gene exosomes were tumor tropic, in 5-FC presence they killed tumor cells but did not inhibit the growth of human skin fibroblast as well as DP-MSCs. Tumor cell-derived suicide gene exosomes home to their cells of origin and hold an exciting potential to become innovative specific therapy for tumors and potentially for metastases. K E Y W O R D S gene-directed enzyme prodrug therapy, intracellular therapy, suicide gene, tumor suicide gene exosomes 1 | INTRODUCTION Further progress in cancer therapy of aggressive tumors and metastases requires an innovative therapeutic modality. The main problem in an improvement of cancer patient survival lays in difficulty of a localized therapeutic attack and distant tumor cell metastasis. Tumor progression is enhanced by circulating tumor cells that disseminated away from the primary tumor and form metastases. The cells retain their original homing character and they possess the ability to re-home to the site of their origin. 1 In addition, standard chemoand radiotherapies do not attack slowly dividing or dormant cancer stem cells. 2,3 All cells in the body release extracellular vesicles
Human tumor trophic mesenchymal stem cells (MSCs) isolated from various tissues and MSCs engineered to express the yeast cytosine deaminase::uracil phosphoribosyl transferase suicide fusion gene (yCD::UPRT-MSCs) released exosomes in conditional medium (CM). Exosomes from all tissue specific yCD::UPRT-MSCs contained mRNA of the suicide gene in the exosome's cargo. When the CM was applied to tumor cells, the exosomes were internalized by recipient tumor cells and in the presence of the prodrug 5-fluorocytosine (5-FC) effectively triggered dosedependent tumor cell death by endocytosed exosomes via an intracellular conversion of the prodrug 5-FC to 5-fluorouracil. Exosomes were found to be responsible for the tumor inhibitory activity. MSCs transduced with the Herpes simplex virus thymidine kinase gene released exosomes causing death of tumor cells in the presence of ganciclovir. The presence of microRNAs in exosomes produced from naive MSCs and corresponding transgene transduced MSCs did not differ significantly. microRNAs from yCD::UPRT-MSCs were not associated with therapeutic effect. MSC suicide gene exosomes represent a new class of tumor cell targeting drug acting intracellular with curative potential.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.