Objective response assessment is important to describe the treatment effect of anticancer drugs. Standardization by using a "common language" is also important for comparison of results from different trials. In contrast to clinical results, which can be subjective, diagnostic imaging provides a greater opportunity for objectivity and standardization. It was generally accepted that a decrease in tumor size correlated with treatment effect; as a result, imaging was adopted for lesion measurement in the World Health Organization (WHO) criteria in 1979. However, because of some limitations of the WHO criteria, the Response Evaluation Criteria in Solid Tumors (RECIST) were introduced in 2000. In RECIST, imaging was recognized as indispensable for response evaluation of solid tumors. Nevertheless, the widespread use of multidetector computed tomography and other imaging innovations have made RECIST outdated, with a concomitant need for modifications. Meanwhile, newer anticancer agents with targeted mechanisms of action have demonstrated an inherent limitation and unsuitability of anatomic tumor evaluation that assesses only lesion size. In addition, the effect of these new drugs changes the paradigm according to which tumor response or response rate is measured. Complete and partial responses cannot be the end points in all clinical trials; in some cases, disease control or progression-free survival may be the more relevant end point.
Co-ordination of breathing and swallowing is essential for normal pharyngeal function and to protect the airway. To allow for safe passage of a bolus through the pharynx, respiration is interrupted (swallowing apnoea); however, the control of airflow and diaphragmatic activity during swallowing and swallowing apnoea are not fully understood. Here, we validated a new airflow discriminator for detection of respiratory airflow and used it together with diaphragmatic and abdominal electromyography (EMG), spirometry and pharyngeal and oesophageal manometry. Co-ordination of breathing and spontaneous swallowing was examined in six healthy volunteers at rest, during hypercapnia and when breathing at 30 breaths min -1 . The airflow discriminator proved highly reliable and enabled us to determine timing of respiratory airflow unambiguously in relation to pharyngeal and diaphragmatic activity. During swallowing apnoea, the passive expiration of the diaphragm was interrupted by static activity, i.e. an 'active breath holding', which preserved respiratory volume for expiration after swallowing. Abdominal EMG increased throughout pre-and post-swallowing expiration, more so during hyper-than normocapnia, possibly to assist expiratory airflow. In these six volunteers, swallowing was always preceded by expiration, and 93 and 85% of swallows were also followed by expiration in normo-and hypercapnia, respectively, indicating that, in man, swallowing during the expiratory phase of breathing may be even more predominant than previously believed. This co-ordinated pattern of breathing and swallowing potentially reduces the risk for aspiration. Insights from these measurements in healthy volunteers and the airflow discriminator will be used for future studies on airway protection and effects of disease, drugs and ageing.
Subhypnotic concentrations of propofol, isoflurane, and sevoflurane cause an increased incidence of pharyngeal dysfunction with penetration of bolus to the larynx. The effect on the pharyngeal contraction pattern was most pronounced in the propofol group, with markedly reduced contraction forces.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.