Abstract. Changes in snowpack and duration of snow cover can cause changes in the regime of snow and rainsnow induced floods. The recent IPCC report suggests that, in snow-dominated regions such as the Alps, the Carpathian Mountains and the northern parts of Europe, spring snowmelt floods may occur earlier in a future climate because of warmer winters, and flood hazards may increase during wetter and warmer winters, with more frequent rain and less frequent snowfall. The monitoring and modelling of snow accumulation and snow melting in mountainous catchments is rather complicated, especially due to the high spatial variability of snow characteristics and the limited availability of terrestrial hydrological data. An evaluation of changes in the snow water equivalent (SWE) during the period of 1961-2010 in the Upper Hron river basin, which is representative of the mountainous regions in Central Slovakia, is provided in this paper. An analysis of the snow cover was performed using simulated values of the snow water equivalent by a conceptual semi-distributed hydrological rainfall-runoff model. Due to the poor availability of the measured snow water equivalent data, the analysis was performed using its simulated values. Modelling of the SWE was performed in different altitude zones by a conceptual semi-distributed hydrological rainfall-runoff model. The evaluation of the results over the past five decades indicates a decrease in the simulated snow water equivalent and the snow duration in each altitude zone and in all months of the winter season. Significant decreasing trends were found for December, January and February, especially in the highest altitude zone.
An evaluation of changes in the snow cover in mountainous basins in Slovakia and a validation of MODIS satellite images are provided in this paper. An analysis of the changes in snow cover was given by evaluating changes in the snow depth, the duration of the snow cover, and the simulated snow water equivalent in a daily time step using a conceptual hydrological rainfall-runoff model with lumped parameters. These values were compared with the available measured data at climate stations. The changes in the snow cover and the simulated snow water equivalent were estimated by trend analysis; its significance was tested using the Mann-Kendall test. Also, the satellite images were compared with the available measured data. From the results, it is possible to see a decrease in the snow depth and the snow water equivalent from 1961-2010 in all the months of the winter season, and significant decreasing trends were indicated in the months of December, January and February
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.