Understanding the type, formation energy and capture cross section of defects is one of the challenges in the field of organometallic halide perovskite (OMHP) devices. Currently, such understanding is limited, restricting the power conversion efficiencies of OMHPs solar cells from reaching their Shockley-Queisser limit. In more matured semiconductors like Si, the knowledge of defects was one of the major factor in successful technological implementation. This knowledge and its control can make a paradigm in development of OMHP devices. Here, we report on deep level (DL) defects and their effect on free charge transport properties of single crystalline methylammonium lead bromide perovskite (MAPbBr3). In order to determine DL activation energy and capture cross section we used photo-Hall effect spectroscopy (PHES) with enhanced illumination in both steady-state and dynamic regimes. This method has shown to be convenient due to the direct DL visualization by sub-bandgap photo-excitation of trapped carriers. DLs with activation energies of EV + 1.05 eV, EV + 1.5 eV, and EV + 1.9 eV (or EC -1.9 eV) were detected. The hole capture cross section of h = 4 × 10 -17 cm 2 is found using photoconductivity relaxation after sub-bandgap photo-excitation. Here, we found the DL defects responsible for non-radiative recombination and its impact on band alignment for the first time. Additionally, the transport properties of single crystal MAPbBr3 is measured by Time of Flight
We combined steady-state photoconductivity and laser-induced transient current measurements under above-band-gap illumination to study the space charge formation in CdZnTe. Analytical as well as numerical models describing space charge limited photocurrents were developed and an excellent agreement with measured data was obtained especially with the Drift-diffusion model. Linear rise of photocurrent at low bias was observed and ascribed to the trapping of injected holes at the region close to the cathode side. Influence of space charge formation, photoconductive gain, contribution of shallow and deep levels to photocurrent-voltage characteristics were numerically simulated. According to the measurements and calculations, recent principles used at the evaluation of detector properties, mainly the mobility-lifetime product, via the photoconductivity are critically assessed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.