Micropollutants and emerging substances pose a serious problem to environmental sustainability and remediation, due to their widespread use and applications in everyday life. This group of chemicals is diverse but with common toxic and harmful properties. Their concentration in the environment is often very low; however, due to their recalcitrant nature, they are persistent in air, water, and soil. From an engineering point of view, the challenge is not straightforward. It is difficult to remove these contaminants from complex mixtures of substances by conventional methods used in wastewater and drinking water treatment. Ozonation and ozone-based AOPs are accepted processes of degradation of resistant substances or at least enhancement of their biodegradability. The aim of this review paper is to present research trends aimed at solving problems in the research and application of ozone-based processes in the removal of micropollutants from wastewater, thus preventing leakage of harmful substances into surface water, soil, and groundwater and facilitating the reuse of wastewater. Priority substances, micropollutants and emerging pollutants, as well as processes and technologies for their transformation and elimination, are briefly specified. Results obtained by the authors in solving research projects that were aimed at eliminating selected micropollutants by ozonation and ozone-based AOPs are also presented. This review focuses on selected alkylphenols, petroleum substances, and organochlorine pesticides.
The paper is focused on the removal of selected priority hazardous substances. Five chlorinated pesticides, i.e. hexachlorobenzene (HCHB), hexachlorobutadiene (HCHBD), lindane (LIN), pentachlorobenzene (PCHB) and heptachlor (HCH) were selected as model pollutants. Higher volatility is characteristic for these substances. Adsorption of these pollutants on granular activated carbon (GAC), zeolite (Zeo) and activated sludge (AS) was investigated. The effect of contact time on the removal efficiency of studied substances was investigated. From results of the work it follows that the highest removal efficiency of studied substances was achieved by the adsorption on activated sludge. This was followed by adsorption efficiency on zeolite. The lowest removal efficiency was measured for adsorption on granular activated carbon.
The legal basis for the monitoring of priority and priority hazardous substances in water, sediment, and biota follows from Directive 2008/105/EC which defines the good chemical status to be achieved by all Member States together with the Water Framework Directive 2000/60/EC. The BTX compounds are considered to be the most toxic components of gasoline. Thus, organic petroleum components can induce a serious problem to public health and the aquatic environment. The effect of ozone and ozone/UV on degradation of the BTX in a model water was studied. The results indicate that the highest BTX removal rates were observed during the first 5 min of the process for all investigated pollutants. The treatment efficiencies above 90% were observed in all investigated pollutants after 40 min of ozonation. The results show a significant proportion of stripping in the removal of BTX components. Higher overall efficiency was observed by O 3 /UV process after abstracting share of stripping process. Application of investigated processes appears to be a promising procedure for removal of petrol aromatic hydrocarbons from aquatic environment. However, for practical application, an improvement of process removal efficiency and investigation of impact of ozonation intermediates and products on aquatic microorganisms are required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.