Lipophosphoglycan (LPG) is the major surface glycoconjugate of Leishmania donovani promastigotes. The repeating disaccharide–phosphate units of LPG are crucial for promastigote survival inside macrophages and establishment of infection. LPG has a number of effects on the host cell, including inhibition of PKC activity, inhibition of nitric oxide production and altered expression of cytokines. LPG also inhibits phagosomal maturation, a process requiring depolymerization of periphagosomal F‐actin. In the present study, we have characterized the dynamics of F‐actin during the phagocytosis of L. donovani promastigotes in J774 macrophages. We observed that F‐actin accumulated progressively around phagosomes containing wild‐type L. donovani promastigotes during the first hour of phagocytosis. Using LPG‐defective mutants and yeast particles coated with purified LPG, we obtained evidence that this effect could be attributed to the repeating units of LPG. LPG also disturbed cortical actin turnover during phagocytosis. The LPG‐dependent accumulation of periphagosomal F‐actin correlated with an impaired recruitment of the lysosomal marker LAMP1 and PKCα to the phagosome. Accumulation of periphagosomal F‐actin during phagocytosis of L. donovani promastigotes may contribute to the inhibition of phagosomal maturation by physically preventing vesicular trafficking to and from the phagosome.
Phagocytosis by neutrophils, macrophages, and other professional phagocytes requires rapid remodeling of actin. Early phagosomes are surrounded by a rim of F-actin that is disassembled during phagosomoal maturation. Breakdown of periphagosomal F-actin and phagolysosome fusion are calcium dependent processes in neutrophils interacting with serum-opsonized prey, but appears to be calcium independent in macrophages interacting with serum- or IgG-opsonized prey. In the present study, we found that calcium was necessary for phagocytosis, breakdown of periphagosomal F-actin, and phagosomal maturation in J774 macrophages interacting with unopsonized prey. We also observed that lipophosphoglycan (LPG) from Leishmania donovani promastigotes required calcium to exert its inhibitory effect on macrophage phagocytosis and periphagosomal F-actin breakdown. We conclude that calcium is essential for phagocytosis, depolymerization of periphagosomal F-actin, and phagosomal maturation in J774 macrophages interacting with unopsonized prey, as well as for proper functioning of LPG.
The protective immune response against the parasite, including the role of dendritic cells (DC) in the course of infection, plays a fundamental role. This study shows that wild-type (WT) Leishmania promastigotes and specifically the phosphoglycans family of virulence-associated antigens inhibit human monocyte-derived dendritic cells (MoDC) maturation and detachment to distinct surfaces. Immature phagocytosis of Leishmania donovani promastigotes by immature MoDC results in the increased expression of CD11b and CD51, and inhibition of cell detachment to distinct surfaces, which was dependent on the presence of phosphoglycans. These findings demonstrate that phosphoglycans of WT L. donovani might also inhibit human DC migration to lymphoid organs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.