BackgroundIn clinical practice there is a need for a specific scale enabling detailed and multifactorial assessment of gait in children with spastic hemiplegic cerebral palsy. The practical value of the present study is linked with the attempts to find a new, affordable, easy-to-use tool for gait assessment in children with spastic hemiplegic cerebral palsy. The objective of the study is to evaluate the Wisconsin Gait Scale (WGS) in terms of its inter- and intra-rater reliability in observational assessment of walking in children with hemiplegic cerebral palsy.MethodsThe study was conducted in a group of 34 patients with hemiplegic cerebral palsy. At the first stage, the original version of the ordinal WGS was used. The WGS, consisting of four subscales, evaluates fourteen gait parameters which can be observed during consecutive gait phases. At the second stage, a modification was introduced in the kinematics description of the knee and weight shift, in relation to the original scale. The same video recordings were rescored using the new, paediatric version of the WGS. Three independent examiners performed the assessment twice. Inter and intra-observer reliability of the modified WGS were determined.ResultsThe findings show very high inter- and intra-observer reliability of the modified WGS. This was reflected by a lack of systematically oriented differences between the repeated measurements, very high value of Spearman’s rank correlation coefficient 0.9 ≤ |R| < 1, very high value of ICC > 0.9, and low value of CV < 2.5% for the specific physical therapists.ConclusionsThe new, ordinal, paediatric version of WGS, proposed by the authors, seems to be useful as an additional tool that can be used in qualitative observational gait assessment of children with spastic hemiplegic cerebral palsy. Practical dimension of the study lies in the fact that it proposes a simple, easy-to-use tool for a global gait assessment in children with spastic hemiplegic cerebral palsy. However, further research is needed to validate the modified WGS by comparing it to other observational scales and objective 3-dimensional spatiotemporal and kinematic gait parameters.Trial registrationanzctr.org.au, ID: ACTRN12617000436370. Registered 24 March 2017.
Purpose: The paper aimed to assess the gait pattern in children and adolescents with juvenile idiopathic arthritis (JIA) treated at the rehabilitation center and to assess changes in this pattern after the end of treatment and 9 months later. Methods: 50 children with JIA were enrolled into the study. 35 healthy volunteers were enrolled into the study for a comparison. Spatiotemporal and kinematic gait parameters were obtained using a movement analysis system. The Gait Deviation Index (GDI) was calculated. The assessment was performed three times: on the day of admission to the rehabilitation center, after the end of a 4-week treatment period and 9 months later. Results: With regard to the majority of spatiotemporal and kinematic parameters, differences in their distribution were highly statistically significant between the study group and the control group (p < 0.001). In two subsequent tests, differences were less significant when compared to the control group (p < 0.01). In the study group, ranges of motion in the sagittal plane in the hip (p < 0.01), knee (p < 0.001) and ankle joints (p < 0.01) increased significantly between tests 1 and 2, and 1 and 3. A significantly lower value of GDI was observed in the study group (right limb; p = 0.036). Conclusions: The gait pattern of children with JIA is significantly different from the one observed in healthy children. A rehabilitation program significantly improved gait in children with JIA, but differences compared to healthy children were still observed, and it indicates that the abnormal gait pattern became permanent in this group of subjects.
BackgroundAvailable publications provide little evidence pertaining to assessment of foot shape in children with intellectual disability. The aim of this study was to assess the parameters of foot shape in children and adolescents with intellectual disability and to evaluate the relationship between the degree of disability and these parameters.Material/MethodsThe study involved 90 individuals aged 7–15 years, including 45 subjects with mild and moderate levels of intellectual disability (study group) and 45 peers with normal intellectual development (control group). Each participant was subjected to photogrammetric assessment of foot shape based on the projection moire effect.ResultsAnalysis of the relationship between the disability level and the assessed parameters showed that the length of the right (p=0.006) and left (p=0.004) foot, as well as Wejsflog’s rate for the right (p<0.001) and left (p<0.001) foot, were significantly higher among children with mild disability, whereas GAMMA angle of the right (p=0.028) and left (p=0.006) foot was significantly higher among children with moderate disability.ConclusionsThe findings show a significant relationship between the degree of disability and the assessed foot parameters. Significant differences between the subjects with intellectual disability and the control group were identified in the basic parameters defining foot structure.
Background: Cerebral palsy (CP) children present complex and heterogeneous motor disorders that cause gait deviations. Clinical gait analysis (CGA) is used to identify, understand and support the management of gait deviations in CP. Children with CP often use ankle–foot orthosis (AFO) to facilitate and optimize their walking ability. The aim of this study was to assess whether the gait deviation index (GDI) and the gait variability index (GVI) results can reflect the changes of spatio-temporal and kinematic gait parameters in spastic hemiplegic CP children wearing AFO. Method: The study group consisted of 37 CP children with hemiparesis. All had undergone a comprehensive, instrumented gait analysis while walking, both barefoot and with their AFO, during the same CGA session. Kinematic and spatio-temporal data were collected and GVI and GDI gait indexes were calculated. Results: Significant differences were found between the barefoot condition and the AFO conditions for selected spatio-temporal and kinematic gait parameters. Changes in GVI and GDI were also statistically significant. Conclusions: The use of AFO in hemiplegic CP children caused a statistically significant improvement in spatio-temporal and kinematic gait parameters. It was found that these changes were also reflected by GVI and GDI. These findings might suggest that gait indices, such as GDI and GVI, as clinical outcome measures, may reflect the effects of specific therapeutic interventions in CP children.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.