This paper presents new approaches to testing for exogeneity in non-parametric models with discrete regressors and instruments. Our interest is in learning about an unknown structural (conditional mean) function. An interesting feature of these models is that under endogeneity the identifying power of a discrete instrument depends on the number of support points of the instruments relative to that of the regressors, a result driven by the discreteness of the variables. Observing that the simple nonparametric additive error model can be interpreted as a linear regression, we present two test-statistics. For the point identifying model, the test is an adapted version of the standard Wu-Hausman approach. This extends the work of Blundell and Horowitz (2007) to the case of discrete regressors and instruments. For the set identifying model, the Wu-Hausman approach is not available. In this case the test-statistic is derived from a constrained minimization problem. The asymptotic distributions of the test-statistics are derived under the null and …xed and local alternatives. The tests are shown to be consistent, and a simulation study reveals that the proposed tests have satisfactory …nite-sample properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.