Atrial fibrillation (AF) and atherosclerotic disease are independent risk factors for acute ischaemic stroke (AIS). The optimal biological marker which could allow differentiation between AF and non-AF AIS patients is still not available.Aim of the study. Aim of the present study was to investigate the role of pentosidine as a potential biological marker for AF in an AIS patient group.Materials and methods. Sixty-three acute ischaemic hemispheric stroke patients were recruited and divided into two groups according to the presumed underlying mechanism: with or without atrial rhythm disorders. Ten healthy volunteers were a reference group for serum level of pentosidine. Carotid artery ultrasound was performed, and common carotid artery stiffness and intima-media thickness were measured. Serum levels of pentosidine and selected routine biochemical risk factors for atherosclerosis (cholesterol and its lipoprotein fractions, homocysteine) were examined. Results. A higher serum level of pentosidine was observed in patients without atrial fibrillation (1,509 ± 485.13pmol/ml); a statistically significant difference was observed compared to the reference group (1,041.52 ± 411.17pmol/ml; p = 0.01), but not the AF patients (1,438.19 ± 495.97pmol/ml; p = 0.59). No significant difference in the non-AF group compared to the AF group for carotid intima-media thickness (IMT)/stiffness and pentosidine serum level was recorded.Conclusions and clinical implications. A higher serum level of pentosidine was observed in AIS patients without atrial fibrillation compared to the healthy volunteers. According to the results of the present study, no difference between these patients in the selected risk factors of atherosclerosis were observed. Further studies are needed to identify a reliable marker of AF that would bring added value to the standard diagnostic workup after acute ischaemic stroke.
Helicobacter pylori is a Gram-negative spiral-shaped bacterium, member of epsilon-Proteobacteria specifically colonizing the gastric epithelium of humans. It causes one of the most common infections worldwide, affecting about half of the world's population. However, it should be noted that the prevalence of H. pylori, particularly in the Western world, has significantly decreased coinciding with an increase of some autoimmune and allergic diseases, such as asthma. Various epidemiological studies have also documented a negative association between H. pylori colonization and the presence of GERD (gastroesophageal reflux disease) and risk of esophageal cancer. Additionally, an upward trend of obesity recently observed in inhabitants of developed countries raised a question about the relationship between H. pylori infection and the human body mass index. The first part of this review describes common, recommended anti-H. pylori treatments. The second part, presents the results of recent experiments aimed at evaluating the association between H. pylori infections and gastro-esophageal diseases, the level of stomach hormones, the human body mass index and allergic diseases. Although some studies suggest an inverse association of H. pylori infection with some health problems of the modern world such as asthma, obesity or GERD, H. pylori should be considered as a harmful human pathogen responsible for serious and sometimes lethal diseases. Thus, many scientists advocate the eradication of H. pylori.
Influenza is one of the most important illnesses in the modern world, causing great public health losses each year due to the lack of medication and broadly protective, long-lasting vaccines. The development of highly immunogenic and safe vaccines is currently one of the major problems encountered in efficient influenza prevention. DNA vaccines represent a novel and powerful alternative to the conventional vaccine approaches. To improve the efficacy of the DNA vaccine against influenza H5N1, we inserted three repeated kappa B (κB) motifs, separated by a 5-bp nucleotide spacer, upstream of the cytomegalovirus promoter and downstream of the SV40 late polyadenylation signal. The κB motif is a specific DNA element (10pb-long) recognized by one of the most important transcription factors NFκB. NFκB is present in almost all animal cell types and upon cell stimulation under a variety of pathogenic conditions. NFκB is released from IκB and translocates to the nucleus and binds to κB sites, thereby leading to enhanced transcription and expression of downstream genes. We tested the variants of DNA vaccine with κB sites flanking the antigen expression cassette and without such sites in two animal models: chickens (broilers and layers) and mice (BALB/c). In chickens, the variant with κB sites stimulated stronger humoral response against the target antigen. In mice, the differences in humoral response were less apparent. Instead, it was possible to spot several gene expression differences in the spleens isolated from mice immunized with both variants. The results of our study indicate that modification of the sequence outside of the sequence encoding the antigen might enhance the immune response to the target but understanding the mechanisms responsible for this process requires further analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.