Cobalt is widespread in the natural environment and can be formed as an effect of anthropogenic activity. This element is used in numerous industrial applications and nuclear power plants. Cobalt is an essential trace element for the human body and can occur in organic and inorganic forms. The organic form is a necessary component of vitamin B12 and plays a very important role in forming amino acids and some proteins in nerve cells, and in creating neurotransmitters that are indispensable for correct functioning of the organism. Its excess or deficiency will influence it unfavourably. Salts of cobalt have been applied in medicine in the treatment of anaemia, as well as in sport as an attractive alternative to traditional blood doping. Inorganic forms of cobalt present in ion form, are toxic to the human body, and the longer they are stored in the body, the more changes they cause in cells. Cobalt gets into the body in several ways: firstly, with food; secondly by the respiratory system; thirdly, by the skin; and finally, as a component of biomaterials. Cobalt and its alloys are fundamental components in orthopaedic implants and have been used for about 40 years. The corrosion of metal is the main problem in the construction of implants. These released metal ions may cause type IV inflammatory and hypersensitivity reactions, and alternations in bone modelling that lead to aseptic loosening and implant failure. The ions of cobalt released from the surface of the implant are absorbed by present macrophages, which are involved in many of the processes associated with phagocytose orthopaedic biomaterials particles and release pro-inflammatory mediators such as interleukin-1 (IL-1), interleukin-6 (IL-6), tumour necrosis factor α (TNF-α), and prostaglandin.
Chitosan-based nanoparticles (chitosan-based nanocomposites; chitosan nanoparticles; ChNPs) are promising materials that are receiving a lot of attention in the last decades. ChNPs have great potential as nanocarriers. They are able to encapsulate drugs as well as active compounds and deliver them to a specific place in the body providing a controlled release. In the article, an overview has been made of the most frequently used preparation methods, and the developed applications in medicine. The presentation of the most important information concerning ChNPs, especially chitosan’s properties in drug delivery systems (DDS), as well as the method of NPs production was quoted. Additionally, the specification and classification of the NPs’ morphological features determined their application together with the methods of attaching drugs to NPs. The latest scientific reports of the DDS using ChNPs administered orally, through the eye, on the skin and transdermally were taken into account.
Cancer diseases remain major health problems in the world despite significant developments in diagnostic methods and medications. Many of the conventional therapies, however, have limitations due to multidrug resistance or severe side effects. Bladder cancer is a complex disorder, and can be classified according to its diverse genetic backgrounds and clinical features. A very promising direction in bladder cancer treatment is targeted therapy directed at specific molecular pathways. Derivatives of quinazolines constitute a large group of chemicals with a wide range of biological properties, and many quinazoline derivatives are approved for antitumor clinical use, e.g.,: erlotinib, gefitinib, afatinib, lapatinib, and vandetanib. The character of these depends mostly on the properties of the substituents and their presence and position on one of the cyclic compounds. Today, new quinazoline-based compounds are being designed and synthesized as potential drugs of anticancer potency against bladder cancers.
Chia seeds (Salviae hispanicae semen) are obtained from Salvia hispanica L. This raw material is distinguished by its rich chemical composition and valuable nutritional properties. It is currently referred to as “health food”. The purpose of the present work was to perform a literature review on S. hispanica and chia seeds, focusing on their chemical composition, biological properties, dietary importance, and medicinal uses. The valuable biological properties of chia seeds are related to their rich chemical composition, with particularly high content of polyunsaturated fatty acids, essential amino acids, polyphenols, as well as vitamins and bioelements. The available scientific literature indicates the cardioprotective, hypotensive, antidiabetic, and antiatherosclerotic effects of this raw material. In addition, studies based on in vitro assays and animal and human models have proven that chia seeds are characterized by neuroprotective, hepatoprotective, anti-inflammatory, and antioxidant properties. These properties indicate a valuable role of chia in the prevention of civilization diseases. Chia seeds are increasingly popular in functional food and cosmetic and pharmaceutical industries. That is attributed not only to their desirable chemical composition and biological activity but also to their high availability. Nevertheless, S. hispanica is also the object of specific biotechnological studies aimed at elaboration of micropropagation protocols of this plant species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.