The programmability of oligonucleotide recognition offers an attractive platform to direct the assembly of reactive partners that can engage in chemical reactions. Recently, significant progress has been made in both the breadth of chemical transformations and in the functional output of the reaction. Herein we summarize these recent progresses and illustrate their applications to translate oligonucleotide instructions into functional materials and novel architectures (conductive polymers, nanopatterns, novel oligonucleotide junctions); into fluorescent or bioactive molecule using cellular RNA; to interrogate secondary structures or oligonucelic acids; or a synthetic oligomer.
Nucleic acid-templated reactions leading to a fluorescent product represent an attractive strategy for the detection and imaging of cellular nucleic acids. Herein we report the use of a Staudinger reaction to promote the reduction of profluorescent azidorhodamine. The use of two cell-permeable GPNA probes, one labeled with the profluorescent azidorhodamine and the other with trialkylphosphine, enabled the detection of the mRNA encoding O-6-methylguanine-DNA methyltransferase in intact cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.