We report the results of the theoretical study of (•)OH-induced oxidative cleavage of dimethyl disulfide (DMDS) and the experimental study of the CH3SSCH3 + (•)OH reaction in the presence of (•)NO. Infrared low temperature argon matrix studies combined with ab initio calculations allowed us to identify cis-CH3SONO, which evidences the formation of the CH3SO(•) and CH3SH molecules in the course of the CH3SSCH3 + (•)OH reaction. Ab initio/quantum chemical topology calculations revealed details of the oxidative cleavage of dimethyl disulfide, which is a complex multistep process involving an alteration of S-O and S-S covalent bonds as well as a hydrogen atom transfer. The ability of delocalization of the unpaired electron density by sulfur atoms and a formation of a hydrogen bond by CH3SO(•) and CH3SH are the factors which seem to explain antiradical properties of DMDS.
Matrix isolation spectroscopy has been combined with ab initio calculations to characterize the 1:1 complexes of H2O2 with OCS and CS2. The infrared spectra of the argon and nitrogen matrices doped with H2O2 and OCS or CS2 have been measured and analyzed. The geometries of the complexes were optimized at the MP2/6-311++G(3df,3pd) level of theory. Four structures were found for the OCS-H2O2 complex and five for the CS2-H2O2 one; every pair of the corresponding structures showed close correspondence. For every optimized structure the interaction energy was partitioned according to the SAPT Scheme and the topological distribution of the charge density (AIM theory) was performed. The SAPT analysis and AIM results indicate that only one complex among the nine optimized ones is stabilized by the hydrogen bonding, namely the OCS-H2O2 one with the OH group of H2O2 bonded to an oxygen atom of OCS. The other structures are stabilized by van der Waals interaction. The spectra analysis evidences that at least two types of the complexes are trapped in the argon matrices including the most stable ones: hydrogen bonded structure in the case of the OCS-H2O2 complex and the structure stabilized by the S···H and C···O interactions in the case of the CS2-H2O2 complex. The solid nitrogen environment triggers the formation of the structures of C2v symmetry with a sulfur atom of OCS or CS2 directed toward the center of O-O bond of H2O2, stabilized by S···O interactions.
We studied the photochemistry of the carbon disulfide-nitrous acid system with the help of Fourier transform infrared (FTIR) matrix isolation spectroscopy and theoretical methods. The irradiation of the CS2···HONO complexes, isolated in solid argon, with the filtered output of the mercury lamp (λ > 345 nm) was found to produce OCS, SO2, and HNCS; HSCN was also tentatively identified. The (13)C, (15)N, and (2)H isotopic shifts as well as literature data were used for product identifications. The evolution of the measured FTIR spectra with irradiation time and the changes in the spectra after matrix annealing indicated that the identified molecules are the products of different reaction channels: OCS being a product of another reaction path than SO2 and HNCS or HSCN. The possible reaction channels between SC(OH)S/SCS(OH) radicals and NO were studied using DFT/B3LYP/aug-cc-pVTZ method. The SC(OH)S and/or SCS(OH) intermediates are formed when HONO attached to CS2 photodissociates into OH and NO. The calculations indicated that SC(OH)S radical can form with NO two stable adducts. The more stable SC(OH)S···NO structure is a reactant for a simple one-step process leading to OCS and HONS molecules. An alternative, less-stable complex formed between SC(OH)S and NO leads to formation of OCS and HSNO. The calculations predict only one stable complex between SCS(OH) radical and NO, which can dissociate along two channels leading to HNCS and SO2 or HSCN and SO2 as the end products. The identified photoproducts indicate that both SC(OH)S and SCS(OH) adducts are intermediates in the CS2 + OH + NO reaction leading to different reaction products.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.