Main conclusion The transfer of polyunsaturated fatty acids from phosphatidylcholine to other lipids involves several enzymes. In Camelina sativa seeds, acyl-CoA:lysophosphatidylcholine acyltransferases could be one of the most important players in this process.Abstract The transfer of polyunsaturated fatty acids from the location of their synthesis (phosphatidylcholine) to other lipids, e.g., triacylglycerol, remains insufficiently understood. Several enzymes could be involved in this process. One of these enzymes is acyl-CoA:lysophosphatidylcholine acyltransferases (LPCATs). In Camelina sativa seeds, LPCATs could be one of the most important players in this process. Our data clearly indicate that the CsLPCATs present in developing seeds have the potential to transfer almost all polyunsaturated fatty acids synthesised on phosphatidylcholine to the acyl-CoA pool. CsLPCAT activity is the highest at 30 °C, and the enzymes operate well at a pH of 7.0-11.0, with the best activity at a pH of 9.0. The activity of CsLPCATs was inhibited by calcium and magnesium ions at a concentration of 0.05-2 mM. In the forward reaction, CsLPCATs preferentially utilise 18:2-CoA; however, other C18 unsaturated fatty acids are also well accepted. In the backward reactions, there is no clear discrimination between the C18 unsaturated fatty acids utilised by the enzymes for phosphatidylcholine remodelling. The activity of CsLPCATs does not differ much between the stages of seed development.
Recent results have suggested that plant lysophosphatidylcholine:acyl-coenzyme A acyltransferases (LPCATs) can operate in reverse in vivo and thereby catalyse an acyl exchange between the acyl-coenzyme A (CoA) pool and the phosphatidylcholine. We have investigated the abilities of Arabidopsis AtLPCAT2, Arabidopsis lysophosphatidylethanolamine acyltransferase (LPEAT2), S. cerevisiae lysophospholipid acyltransferase (Ale1) and S. cerevisiae lysophosphatidic acid acyltransferase (SLC1) to acylate lysoPtdCho, lysoPtdEtn and lysoPtdOH and act reversibly on the products of the acylation; the PtdCho, PtdEtn and PtdOH. The tested LPLATs were expressed in an S. cervisiaeale1 strain and enzyme activities were assessed in assays using microsomal preparations of the different transformants. The results show that, despite high activity towards lysoPtdCho, lysoPtdEtn and lysoPtdOH by the ALE1, its capacities to operate reversibly on the products of the acylation were very low. Slc1 readily acylated lysoPtdOH, lysoPtdCho and lysoPtdEtn but showed no reversibility towards PtdCho, very little reversibility towards PtdEtn and very high reversibility towards PtdOH. LPEAT2 showed the highest levels of reversibility towards PtdCho and PtdEtn of all LPLATs tested but low ability to operate reversibly on PtdOH. AtLPCAT2 showed good reversible activity towards PtdCho and PtdEtn and very low reversibility towards PtdOH. Thus, it appears that some of the LPLATs have developed properties that, to a much higher degree than other LPLATs, promote the reverse reaction during the same assay conditions and with the same phospholipid. The results also show that the capacity of reversibility can be specific for a particular phospholipid, albeit the lysophospholipid derivatives of other phospholipids serve as good acyl acceptors for the forward reaction of the enzyme.Electronic supplementary materialThe online version of this article (doi:10.1007/s11745-015-4102-0) contains supplementary material, which is available to authorized users.
Arabidopsis () contains two enzymes (encoded by the and genes) preferentially acylating lysophosphatidylethanolamine (LPE) with acyl-coenzyme A (CoA), designated LYSOPHOSPHATIDYLETHANOLAMINE ACYLTRANSFERASE1 (LPEAT1) and LPEAT2. The transfer DNA insertion mutant lpeat2 and the double mutant lpeat1 lpeat2 showed impaired growth, smaller leaves, shorter roots, less seed setting, and reduced lipid content per fresh weight in roots and seeds and large increases in LPE and lysophosphatidylcholine (LPC) contents in leaves. Microsomal preparations from leaves of these mutants showed around 70% decrease in acylation activity of LPE with 16:0-CoA compared with wild-type membranes, whereas the acylation with 18:1-CoA was much less affected, demonstrating that other lysophospholipid acyltransferases than the two LPEATs could acylate LPE The above-mentioned effects were less pronounced in the single lpeat1 mutant. Overexpression of either LPEAT1 or LPEAT2 under the control of the 35S promotor led to morphological changes opposite to what was seen in the transfer DNA mutants. Acyl specificity studies showed that LPEAT1 utilized 16:0-CoA at the highest rate of 11 tested acyl-CoAs, whereas LPEAT2 utilized 20:0-CoA as the best acyl donor. Both LPEATs could acylate either position of ether analogs of LPC The data show that the activities of LPEAT1 and LPEAT2 are, in a complementary way, involved in growth regulation in Arabidopsis. It is shown that LPEAT activity (especially LPEAT2) is essential for maintaining adequate levels of phosphatidylethanolamine, LPE, and LPC in the cells.
Main conclusions The main source of polyunsaturated acyl-CoA in cytoplasmic acyl-CoA pool of Camelina sativa seeds are fatty acids derived from phosphatidylcholine followed by phosphatidic acid. Contribution of phosphatidylethanolamine is negligible. Abstract While phosphatidylethanolamine (PE) is the second most abundant phospholipid, phosphatidic acid (PA) only constitutes a small fraction of C. sativa seeds’ polar lipids. In spite of this, the relative contribution of PA in providing fatty acids for the synthesis of acyl-CoA, supplying cytosolic acyl-CoA pool seems to be much higher than the contribution of PE. Our data indicate that up to 5% of fatty acids present in mature C. sativa seeds are first esterified with PA, in comparison to 2% first esterified with PE, before being transferred into acyl-CoA pool via backward reactions of either acyl-CoA:lysophosphatidic acid acyltransferases (CsLPAATs) or acyl-CoA:lysophoshatidylethanolamine acyltransferases (CsLPEATs). Those acyl-CoAs are later reused for lipid biosynthesis or remodelling. In the forward reactions both aforementioned acyltransferases display the highest activity at 30 °C. The spectrum of optimal pH differs for both enzymes with CsLPAATs most active between pH 7.5–9.0 and CsLPEATs between pH 9.0 to 10.0. Whereas addition of magnesium ions stimulates CsLPAATs, calcium and potassium ions inhibit them in concentrations of 0.05–2.0 mM. All three types of ions inhibit CsLPEATs activity. Both tested acyltransferases present the highest preferences towards 16:0-CoA and unsaturated 18-carbon acyl-CoAs in forward reactions. However, CsLPAATs preferentially utilise 18:1-CoA and CsLPEATs preferentially utilise 18:2-CoA while catalysing fatty acid remodelling of PA and PE, respectively.
In most oilseeds, two evolutionarily unrelated acyl-CoA:diacylglycerol acyltransferase (DGAT) enzymes, DGAT1 and DGAT2, are the main contributors to the acylation of diacylglycerols in the synthesis of triacylglycerol. DGAT1 and DGAT2 are both present in the important crop oilseed rape (Brassica napus), with each type having four isoforms. We studied the activities of DGAT isoforms during seed development in microsomal fractions from two oilseed rape cultivars: edible, low-erucic acid (22:1) MONOLIT and nonedible high-erucic acid MAPLUS. Whereas the specific activities of DGATs were similar with most of the tested acyl-CoA substrates in both cultivars, MAPLUS had 6-to 14-fold higher activity with 22:1-CoA than did MONOLIT. Thus, DGAT isoforms with different acyl-CoA specificities are differentially active in the two cultivars. We characterized the acyl-CoA specificities of all DGAT isoforms in oilseed rape in the microsomal fractions of yeast cells heterologously expressing these enzymes. All four DGAT1 isoforms showed similar and broad acyl-CoA specificities. However, DGAT2 isoforms had much narrower acyl-CoA specificities: two DGAT2 isoforms were highly active with 22:1-CoA, while the ability of the other two isoforms to use this substrate was impaired. These findings elucidate the importance, which a DGAT isoform with suitable acyl-CoA specificity may have, when aiming for high content of a particular fatty acid in plant triacylglycerol reservoirs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.