Graphs and Algorithms
International audience
A k-colouring of a graph G is called acyclic if for every two distinct colours i and j, the subgraph induced in G by all the edges linking a vertex coloured with i and a vertex coloured with j is acyclic. In other words, there are no bichromatic alternating cycles. In 1999 Boiron et al. conjectured that a graph G with maximum degree at most 3 has an acyclic 2-colouring such that the set of vertices in each colour induces a subgraph with maximum degree at most 2. In this paper we prove this conjecture and show that such a colouring of a cubic graph can be determined in polynomial time. We also prove that it is an NP-complete problem to decide if a graph with maximum degree 4 has the above mentioned colouring.
Let G = (V, E) be a graph. A global secure set SD ⊆ V is a dominating set which satisfies the condition: for all X ⊆ SD, |N[X] ∩ SD| ≥ | N[X] − SD|. A global defensive alliance is a set of vertices A that is dominating and satisfies a weakened condition: for all x ∈ A, |N[x] ∩ A| ≥ |N[x] − A|. We give an upper bound on the cardinality of minimum global secure sets in cactus trees. We also present some results for trees, and we relate them to the known bounds on the minimum cardinality of global defensive alliances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.