Production of doubled haploid (DH) cereals is becoming increasingly important in crop breeding programs, but the methods currently applied still remain inefficient. In this study, we present the procedure for obtaining haploid and DH oat plants by pollination with maize. Thirty-three oat genotypes were used in the experiments. Oat plants (14,543 florets) were pollinated with maize pollen 2 days after emasculation and treated with auxin analogues: 2,4-dichlorophenoxyacetic acid (2,4-D) or 3,6-dichloro-2-methoxybenzoic acid (dicamba), at a concentration of 100 mg dm -3 . These auxins had no significant influence on the number of haploid embryos developed, but they significantly affected their germination ability, and thus haploid and DH plant production. After application of 2,4-D, 5.06 % of haploid embryos developed per emasculated florets, 1.37 % of haploid plants and 0.54 % of DH lines, whereas after dicamba treatment, 4.3 % of haploid embryos, 0.64 % of haploid plants and 0.25 % of DH lines. Haploid embryos were obtained from all genotypes tested, however, their frequency differed between individual genotypes. The highest number of embryos per emasculated florets (9.0 %) was obtained from the DC09040 genotype after dicamba treatment, and from STH123 9 Skorpion (8.9 %) after 2,4-D treatment. The genotype did not significantly affect the development of haploid plants, nevertheless the highest number of DH lines was obtained from the Arab 9 Typhon genotype. There were 52 DH lines acquired from 28 genotypes, which produced a total of 5227 seeds. The number of seeds varied between the DH lines from 2 to 595. Seeds of all the DH lines produced fertile next generation. DH lines are currently included in breeding programs. Keywords 2,4-D, dicamba Á Oat haploids Á Wide crossing Á DH lines Á F 1 progeny & Edyta Skrzypek
The aim of the study was to assess the role of salicylic acid (SA) and abscisic acid (ABA) in osmotic stress tolerance of wheat seedlings. This was accomplished by determining the impact of the acids applied exogenously on seedlings grown under osmotic stress in hydroponics. The investigation was unique in its comprehensiveness, examining changes under osmotic stress and other conditions, and testing a number of parameters simultaneously. In both drought susceptible (SQ1) and drought resistant (CS) wheat cultivars, significant physiological and biochemical changes were observed upon the addition of SA (0.05 mM) or ABA (0.1 μM) to solutions containing half-strength Hoagland medium and PEG 6000 (−0.75 MPa). The most noticeable result of supplementing SA or ABA to the medium (PEG + SA and PEG + ABA) was a decrease in the length of leaves and roots in both cultivars. While PEG treatment reduced gas exchange parameters, chlorophyll content in CS, and osmotic potential, and conversely, increased lipid peroxidation, soluble carbohydrates in SQ1, proline content in both cultivars and total antioxidants activity in SQ1, PEG + SA or PEG + ABA did not change the values of these parameters. Furthermore, PEG caused a two-fold increase of endogenous ABA content in SQ1 and a four-fold increase in CS. PEG + ABA increased endogenous ABA only in SQ1, whereas PEG + SA caused a greater increase of ABA content in both cultivars compared to PEG. In PEG-treated plants growing until the harvest, a greater decrease of yield components was observed in SQ1 than in CS. PEG + SA, and particularly PEG + ABA, caused a greater increase of these yield parameters in CS compared to SQ1. In conclusion, SA and ABA ameliorate, particularly in the tolerant wheat cultivar, the harmful effects and after effects of osmotic stress induced by PEG in hydroponics through better osmotic adjustment achieved by an increase in proline and carbohydrate content as well as by an increase in antioxidant activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.