Waste pharmaceutical blisters (WPBs) are a type of multimaterial waste that contain layers of plastic and metal connected permanently. The separation of those materials with the application of mechanical methods is impossible. One of the methods that can be used to recover metal from WPBs is pyrolysis—a thermal decomposition process performed in the absence of oxygen. The products are a solid fraction that contain char and metal, liquid fraction, and gases. The gases produced during the process can be used as a fuel, either alone or mixed with another gaseous fuel such as natural gas. The presented research was focused on the determination of the influence of the process temperature on the composition of gases produced during the pyrolysis of two types of pharmaceutical blister waste: pre- and postconsumer. The postconsumer waste contains trace amounts of pharmaceutical products. One of the goals was to determine whether those compounds influence the gas properties. The method of neutralizing these materials can be part of the circular economy, the idea of which is to strive to maximize the use of natural resources and bring them back into circulation. The presented method allows not only to recover char, oil, and metal that can be easily separated from the solid fraction, but also to reuse the process gases as a fuel and, possibly, to form HCl during the decomposition of PVC. The paper includes the analysis of the input material, as well as a detailed chemical analysis of the produced gases.
According to European regulations, indium and germanium are critical metals. Therefore, their recovery is a crucial issue. The present study was focused on the pyrometallurgical treatment of polymetallic PbSnIn and PbSnCuGeIn generated at the Miasteczko Zinc Smelter in order to recover In and Ge. The paper presents the production process of these alloys, as well as their characteristics. The materials were subjected to thermal processing in a laboratory-scale refining kettle fired with natural gas and air. Two different methods for the processing of the individual alloys are described. Two series (one for each material) consisting of five tests were performed in order to determine the optimal metal recovery parameters. The described pyrometallurgical process resulted in the production of an indium-enriched semi-product (In—1.15%) and a Ge–In-enriched product (Ge—11.1%, In—3.0%). Direct indium recovery rates were approximately 83% and >99%, respectively.
Photovoltaic panels (PV) are one of the most popular technological solutions used to produce green renewable energy. They are known as green technology, but by analyzing a life cycle of a common panel, we can find out that production of these panels is strictly associated with generation of a large waste stream. PV modules are constantly modified and, therefore, it is required to consider the impact of the applied materials on the environment during the whole lifecycle of the product. The most important aspect of the assessment of a life cycle of a photovoltaic module in the phase of decommissioning is material recycling. The process of material recycling is very difficult, due to the lamination used in the currently exploited technology. This paper presents the results of pyrolysis for a sample of a silicon module. The results of the presented research show a weight loss of 48.16 in case of the tested samples. This paper presents the outcome of a quantitative analysis of the content of polycyclic aromatic for liquid and concentrations of Br, Cl and F for a gaseous fraction of pyrolysis products. The goal of the research presented in the paper was to find the optimal parameters for thermal separation, as well as the influence of the energy consumption and materials separation efficiency on the final thermal efficiency of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.