Despite advances with therapies targeting the programmed cell death protein 1 (PD-1) or its ligand (PD-L1), many cancer patients are refractory to or relapse following treatment. Resistance to anti-PD-1 treatment is associated with upregulation of other checkpoint inhibitor receptors such as LAG-3 (Lymphocyte Activation Gene 3). FS118, currently being evaluated in a Phase 1 clinical trial in patients with advanced malignancies (NCT03440437), is a tetravalent bispecific antibody targeting LAG-3 and PD-L1, two immune checkpoint molecules that promote tumour escape from immune surveillance. We have characterised both in vitro and in vivo the functional activity of FS118 and find that this bispecific antibody can overcome PD-L1 and LAG-3 immune suppressive signals. We report a potential novel mechanism of action not observed with the combination of single PD-L1 and LAG-3 antibodies. Our results indicate that FS118 represents a possible novel approach to overcome some of the mechanism of resistance to PD-(L)1 blockade.
It has been reported that IL-6 knockout mice (IL-6−/−) possess lower endurance capacity than wild type mice (WT), however the underlying mechanism is poorly understood. The aim of the present work was to examine whether reduced endurance running capacity in IL-6−/− mice is linked to impaired maximal oxygen uptake (V′O2max), decreased glucose tolerance, endothelial dysfunction or other mechanisms. Maximal running velocity during incremental running to exhaustion was significantly lower in IL-6−/− mice than in WT mice (13.00±0.97 m.min−1 vs. 16.89±1.15 m.min−1, P<0.02, respectively). Moreover, the time to exhaustion during running at 12 m.min−1 in IL-6−/− mice was significantly shorter (P<0.05) than in WT mice. V′O2max in IL-6−/− (n = 20) amounting to 108.3±2.8 ml.kg−1.min−1 was similar as in WT mice (n = 22) amounting to 113.0±1.8 ml.kg−1.min−1, (P = 0.16). No difference in maximal COX activity between the IL-6−/− and WT mice in m. soleus and m. gastrocnemius was found. Moreover, no impairment of peripheral endothelial function or glucose tolerance was found in IL-6−/− mice. Surprisingly, plasma lactate concentration during running at 8 m.min−1 as well at maximal running velocity in IL-6−/− mice was significantly lower (P<0.01) than in WT mice. Interestingly, IL-6−/− mice displayed important adaptive mechanisms including significantly lower oxygen cost of running at a given speed accompanied by lower expression of sarcoplasmic reticulum Ca2+-ATPase and lower plasma lactate concentrations during running at submaximal and maximal running velocities. In conclusion, impaired endurance running capacity in IL-6−/− mice could not be explained by reduced V′O2max, endothelial dysfunction or impaired muscle oxidative capacity. Therefore, our results indicate that IL-6 cannot be regarded as a major regulator of exercise capacity but rather as a modulator of endurance performance. Furthermore, we identified important compensatory mechanism limiting reduced exercise performance in IL-6−/− mice.
As a facultative intracellular pathogen, Staphylococcus aureus invades macrophages and then promotes the cytoprotection of infected cells thus stabilizing safe niche for silent persistence. This process occurs through the upregulation of crucial antiapoptotic genes, in particular, myeloid cell leukemia-1 (MCL-1). Here, we investigated the underlying mechanism and signal transduction pathways leading to increased MCL-1 expression in infected macrophages. Live S. aureus not only stimulated de novo synthesis of Mcl-1, but also prolonged the stability of this antiapoptotic protein. Consistent with this, we proved a crucial role of Mcl-1 in S. aureus-induced cytoprotection, since silencing of MCL1 by siRNA profoundly reversed the cytoprotection of infected cells leading to apoptosis. Increased MCL1 expression in infected cells was associated with enhanced NFκB activation and subsequent IL-6 secretion, since the inhibition of both NFκB and IL-6 signalling pathways abrogated Mcl-1 induction and cytoprotection. Finally, we confirmed our observation in vivo in murine model of septic arthritis showing the association between the severity of arthritis and Mcl-1 expression. Therefore, we propose that S. aureus is hijacking the Mcl-1-dependent inhibition of apoptosis to prevent the elimination of infected host cells, thus allowing the intracellular persistence of the pathogen, its dissemination by infected macrophages, and the progression of staphylococci diseases.
Background Despite advances with therapies targeting the PD-1/PD-L1 pathway, many patients are refractory or relapse following treatment. LAG-3 expression on exhausted T cells and T-regulatory cells (Tregs) in the tumor may be responsible for this resistance and provides a rationale for co-treatment with antibodies targeting LAG-3 and PD-L1. An alternative approach is the development of a bispecific antibody encompassing binding sites for two antigens. FS118 is a bispecific antibody targeting LAG-3 and PD-L1 that provides dual pathway blockade with the potential to drive unique biology via co-binding of PD-L1 and LAG-3. Methods FS118 was evaluated in vitro for antigen binding and de-repression of LAG-3 and PD-L1 function in both a D011.10 T-cell activation system and a super-antigen stimulated peripheral blood mononuclear cells (PBMC) assay. FS118 was also assessed in a human CD8 specific MHC I restricted antigen recall assay. Anti-tumor activity of a murine-specific molecule, mLAG-3/PD-L1 mAb2, was evaluated in vivo in the MC38 mouse tumor model and associated immunophenotypic changes were evaluated using flow cytometry. Results In murine in vitro assay systems, mLAG3/PD-L1 mAb2 recapitulates the function of FS118 in human systems. Furthermore, FS118 was shown to provide increased activation of human CD8+ T-cells compared to a PD-L1 mAb alone in response to stimulation with MHC Class I restricted peptides. In vivo, studies performed in MC38 tumor-bearing mice studies indicated that mLAG-3/PD-L1 could result in significant anti-tumor activity equivalent to a combination of antibodies targeting LAG-3 and PD-L1. Pharmacodynamic assessment demonstrated changes in the immunophenotype of tumor-infiltrating lymphocytes in the tumor of mLAG3/PD-L1 mAb2 treated mice. These changes were observed in cohorts which received the anti-mouse LAG-3/PD-L1 mAb2 and revealed a both a loss of LAG-3 surface expression on CD4+ and CD8+ T cells, as well as an increase in the CD8:Treg ratio. Conclusions Dual blockade of LAG-3 and PD-L1 with a bispecific antibody results in T-cell activation at least comparable to a combination of antibodies targeting LAG-3 and PD-L1 in primary T-cell assays and murine tumor models. Taken together, the human PBMC based assays and mouse tumor model data demonstrate that a LAG-3/PD-L1 mAb2 can not only potently suppress the checkpoint inhibitor LAG-3 at the tumor site, but does this in part through stimulating a CD8+ T cell mediated response. These data provide evidence to support the rationale for clinical development of FS118, a LAG-3/PD-L1 mAb2, for the treatment of human cancers. Citation Format: Matthew Kraman, Natalie Fosh, Katarzyna Kmiecik, Katy Everett, Carlo Zimarino, Mustapha Faroudi, Mateusz Wydro, Alexander Koers, Lesley Young, Daniel Gliddon, Michelle Morrow, Jacqueline Doody, Mihriban Tuna, Neil Brewis. Dual blockade of PD-L1 and LAG-3 with FS118, a unique bispecific antibody, induces CD8+ T-cell activation and modulates the tumor microenvironment to promote antitumor immune responses [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2018; 2018 Apr 14-18; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2018;78(13 Suppl):Abstract nr 2719.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.