The high efficiency of intensive operation of wet scrubbers is the result of a simultaneous formation of different mechanisms of dust particle collectors. The collectors can be understood as droplets of atomised liquid, bubbles formed in the conditions of intensive barbotage, liquid surface and wet surfaces. All collectors are formed during the operation of the circulating unit. The deposition of dust particles from gas occurs as a result of centrifugal forces and secondary circulations in the guide duct as well as the effect of the water curtain, liquid barbotage and the flow of dusty gas through the droplet-splash layer. Discussions substantiating the possibility of confirming the effect of suspension viscosity on the efficiency of the dust collection process can be related both to the analysis of basic mechanisms affecting the deposition of particles on liquid collectors and the conditions of generating collectors. In total liquid recirculation in wet dedusting equipment, concentration of solids in a liquid rises. In such conditions, a gradual decrease in their dedusting efficiency is possible. The effect depends on dust physiochemical properties, kinetic energy of particles, the type of equipment used, and specifically on the way of organization of the contact of the liquid and gas phases. Studies of the effectiveness of dedusting depending on various factors are given in the next article by the same authors.
In the paper results of investigations of rheological properties for selected PEO-water solutions are presented. On the basis of measurements, carried out with use of rotational viscosimeter values of shear stresses were determined in the relatively wide range of shear rates. Rheological curves were described by the Ostwald de Waele model (or so-called power-law). The model coefficients such as the fluid consistency coefficient k and the flow behavior index n were determined using Levenberg−Marquardt algorithm for nonlinear estimation. The influence of temperature on properties and behavior examined non-Newtonian fluids was also determined. Results were processed in the curve shift parameter at. Experiments shown a significant effect of poly(ethylene oxide) concentration cPEO on rheological properties of examined solutions. For the lowest concentration (cPEO=1.2%) solutions exhibited properties similar to Newtonian fluids with values of n close to 1. With increasing of PEO concentration in water (cPEO=2.4-4.8%), solutions exhibited properties as non - Newtonian fluids, pseudoplastic, without yield limit. In these cases values of n were below unity and for the highest concentration (cPEO=4.8%) belonged to the range of n=0.5694-0.7536, depending on the temperature. Results of investigations can be used during numerical simulations, design and optimization of industrial equipment, working with fluids of this kind, including mixing vessels, columns or heat exchangers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.