Numerous studies on lead (Pb) neurotoxicity have indicated this metal to be a dangerous toxin, particularly during developmental stages of higher organisms. Astrocytes are responsible for sequestration of this metal in brain tissue. Activation of astroglia may often lead to loss of the buffering function and contribute to pathological processes. This phenomenon is accompanied by death of neuronal cells and may be connected with inflammatory events arising from the production of a wide range of cytokines and chemokines. The effects of prolonged exposure to Pb upon glial activation are examined in immature rats to investigate this potential proinflammatory effect. When analyzed at the protein level, glial activation is observed after Pb exposure, as reflected by the increased level of glial fibrillary acidic protein and S-100beta proteins in all parts of the brain examined. These changes are associated with elevation of proinflammatory cytokines. Production of interleukin (IL)-1beta and tumor necrosis factor-alpha is observed in hippocampus, and production of IL-6 is seen in forebrain. The expression of fractalkine is observed in both hippocampus and forebrain but inconsiderably in the cerebellum. In parallel with cytokine expression, signs of synaptic damage in hippocampus are seen after Pb exposure, as indicated by decreased levels of the axonal markers synapsin I and synaptophysin. Obtained results indicate chronic glial activation with coexisting inflammatory and neurodegenerative features as a new mechanism of Pb neurotoxicity in immature rat brain.
This study provides evidence supporting the presence of erythrocytes deficient in CD55 presentation in HS and hereditary microcytosis. Moreover, deficiency of CD55 antigen presentation on RBC does not correlate with the amount of CD55 in RBC membrane. Further studies using molecular techniques will clarify the exact participation of CD55 deficiency in premature RBC clearance in HHA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.