Introduction. Among free-living amoebae that are widely distributed in nature only four genera/species are known as agents of human infections: Acanthamoeba spp., Naegleriafowleri, Balamuthia mandrillaris and Sappiniapedata. These amoebae are not well adapted to parasitism, and could exist in the human environment without the need for a host. Infections due to these amoebae, despite low morbidity, are characterized by relatively high mortality rate and pose serious clinical problems. Objectve. This review study presents and summarizes current knowledge about infections due to pathogenic and opportunistic free-living amoebae focused on epidemiology, clinical manifestations, diagnosis and treatment based on global literature. State of knowledge. All four genera have been recognized as etiologic factors of fatal central nervous system infections and other serious diseases in humans. N. fowleri causes an acute fulminating meningoencephalitis in children and young adults. Acanthamoeba spp. and B.mandrillaris are opportunistic pathogens causing granulomatous amoebic encephalitis and disseminated or localized infections which could affect the skin, sinuses, lungs, adrenals and/or bones. Acanthamoeba spp. is also the main agent of acute eye infection -Acanthamoeba keratitis, mostly in contact lens wearers. However, there is only one recognized case of encephalitis caused by S. pedata. Conclusions. Amoebic diseases are difficult to diagnose which leads to delayed treatment, and result in a high mortality rate. Considering those issues, there is an urgent need to draw more attention to this type of diseases.
Non-diphtherial corynebacteria are Gram-positive rods that cause opportunistic infections, what is supported by their ability to produce biofilm on artificial surfaces. In this study, the characteristic of the biofilm produced on vascular and urological catheters was determined using a confocal microscopy for the most frequently involved in infections diphtheroid species. They were represented by the reference strains of Corynebacterium striatum ATCC 6940 and C. amycolatum ATCC 700207. The effect of ciprofloxacin on the biofilm produced by the antibiotic-susceptible C. striatum strain was evaluated using three concentrations of the antimicrobial agent (2 ×, 4 ×, and 6 × the MIC – the Minimum Inhibitory Concentration). The basis for the interpretation of results was the statistical analysis of maximum points readings from the surface comprising a total of 245 areas of the biofilm image under the confocal microscope. It was observed that ciprofloxacin at a concentration equal to 4 × MIC paradoxically caused an enlargement of areas with live bacteria within the biofilm. Biofilm destruction required the application of ciprofloxacin at a concentration higher than 6 × MIC. This suggests that the use of relatively low doses of antimicrobial agents may increase the number of live bacteria within the biofilm, and further facilitate their detachment from the biofilm’s structure thus leading to the spread of bacteria into the bloodstream or to the neighboring tissues. The method of biofilm analysis presented here provides the original and novel approach to the investigation of the diphtheroid biofilms and their interaction with antimicrobial agents.
PurposeThe purpose of this study was to investigate the molecular mechanisms of fluoroquinolone resistance in Moraxella catarrhalis clinical strains isolated in Lublin, Poland.Materials and methodsA total of 150 non-duplicate clinical strains of M. catarrhalis were obtained from individuals with signs of upper respiratory tract infection. Bacterial identification was corroborated on the basis of phenotypic and biochemical characteristics as well as with the use of molecular tests. The antimicrobial susceptibility of M. catarrhalis isolates was determined using the disk diffusion method and Etest. Mutations in the gyrase (gyrA and gyrB) and topoisomerase (parC and parE) genes were determined by polymerase chain reaction and sequencing.ResultsIt was observed that 16.7% of the studied isolates were drug resistant. Resistance to tetracycline was detected for 12% of the strains. Resistance to nalidixic acid, moxifloxacin, and levofloxacin was exhibited by 2.7% of the strains; 1.3% of the strains were resistant to trimethoprim/sulfamethoxazole and 0.7% to erythromycin. Minimum inhibitory concentration values of the four strains demonstrating fluoroquinolone resistance were: 6–12 mg/L for nalidixic acid, 1–1.5 mg/L for levofloxacin, 1 mg/L for moxifloxacin, and 0.25–0.5 mg/L for ciprofloxacin. The research resulted in the detection of mutations in 4 strains, in gyrase gyrA and gyrB genes. In gyrA gene, there occurred mutation G412C as well as four silent transition mutations. Within gyrB gene, there occurred mutation, substitution A1481G, as well as two identical silent mutations.ConclusionOur findings reveal that resistance to fluoroquinolones in M. catarrhalis is connected with amino acid substitutions in gyrA and gyrB genes. To our knowledge, this work is the first description of fluoroquinolone-resistant clinical strains of M. catarrhalis with described mutations in gyrA and gyrB genes isolated in Poland and in Europe.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.