Cell-to-cell signalling is a major mechanism controlling plant morphogenesis. Transport of signalling molecules through plasmodesmata is one way in which plants promote or restrict intercellular signalling over short distances. Plasmodesmata are membrane-lined pores between cells that regulate the intercellular flow of signalling molecules through changes in their size, creating symplasmic fields of connected cells. Here we examine the role of plasmodesmata and symplasmic communication in the establishment of plant cell totipotency, using somatic embryo induction from Arabidopsis explants as a model system. Cell-to-cell communication was evaluated using fluorescent tracers, supplemented with histological and ultrastructural analysis, and correlated with expression of a WOX2 embryo reporter. We showed that embryogenic cells are isolated symplasmically from non-embryogenic cells regardless of the explant type (immature zygotic embryos or seedlings) and inducer system (2,4-dichlorophenoxyacetic acid or the BABY BOOM (BBM) transcription factor), but that the symplasmic domains in different explants differ with respect to the maximum size of molecule capable of moving through the plasmodesmata. Callose deposition in plasmodesmata preceded WOX2 expression in future sites of somatic embryo development, but later was greatly reduced in WOX2-expressing domains. Callose deposition was also associated with a decrease DR5 auxin response in embryogenic tissue. Treatment of explants with the callose biosynthesis inhibitor 2-deoxy-D-glucose supressed somatic embryo formation in all three systems studied, and also blocked the observed decrease in DR5 expression. Together these data suggest that callose deposition at plasmodesmata is required for symplasmic isolation and establishment of cell totipotency in Arabidopsis.
The relationship between somatic embryogenesis (SE) and the expression of the BABY BOOM (BBM) gene was studied in cultured immature zygotic embryos (IZEs) using a transgenic line of Arabidopsis thaliana containing a BBMPro::GUS construct. Results showed spatio-temporal differences in BBM expression in explants during culture. BBM promoter activity was observed in freshly isolated IZEs except distal parts of cotyledons. At the beginning of culture, considerable increase of GUS staining intensity was observed in all parts of explants, which maintained at high level over next few days and coincide with cell divisions. Gradual decrease of GUS distribution in explants was observed at about the 5 th day of culture. BBM promoter activity became largely restricted to dividing cells, then to developing somatic embryos, shoot-like structures and callus. In parts of explants not involved in morphogenesis BBM promoter activity was absent or hardly seen. Thus the in vitro expression of BBM coincides with cell proliferation and morphogenesis.Additional key words: GUS construct, immature zygotic embryos. ⎯⎯⎯⎯
The relationship between somatic embryogenesis (SE) and the expression of the BABY BOOM (BBM) gene was studied in cultured immature zygotic embryos (IZEs) using a transgenic line of Arabidopsis thaliana containing a BBMPro::GUS construct. Results showed spatio-temporal differences in BBM expression in explants during culture. BBM promoter activity was observed in freshly isolated IZEs except distal parts of cotyledons. At the beginning of culture, considerable increase of GUS staining intensity was observed in all parts of explants, which maintained at high level over next few days and coincide with cell divisions. Gradual decrease of GUS distribution in explants was observed at about the 5 th day of culture. BBM promoter activity became largely restricted to dividing cells, then to developing somatic embryos, shoot-like structures and callus. In parts of explants not involved in morphogenesis BBM promoter activity was absent or hardly seen. Thus the in vitro expression of BBM coincides with cell proliferation and morphogenesis.
No abstract
Intercellular signaling during embryo patterning is not well understood and the role of symplasmic communication has been poorly considered. The correlation between the symplasmic domains and the development of the embryo organs/tissues during zygotic embryogenesis has only been described for a few examples, including Arabidopsis. How this process occurs during the development of somatic embryos (SEs) is still unknown. The aim of these studies was to answer the question: do SEs have a restriction in symplasmic transport depending on the developmental stage that is similar to their zygotic counterparts? The studies included an analysis of the GFP distribution pattern as expressed under diverse promoters in zygotic embryos (ZEs) and SEs. The results of the GFP distribution in the ZEs and SEs showed that 1/the symplasmic domains between the embryo organs and tissues in the SEs was similar to those in the ZEs and 2/the restriction in symplasmic transport in the SEs was correlated with the developmental stage and was similar to the one in their zygotic counterparts, however, with the spatio-temporal differences and different PDs SEL value between these two types of embryos.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.