Many methods for the detection of genomic DNA methylation states have appeared. Currently, nearly all such methods employ bisulfite-mediated deamination of denatured DNA. While this treatment effectively deaminates cytosines to uracils, leaving most 5-methylcytosines intact, it also introduces abasic sites that generate a significant number of single-strand breaks in DNA. We have investigated the interplay of these two processes in order to determine their relative effects on the methylation-sensitive QPCR method. The extent of cleavage of the input DNA is significant and appears to be an increasing function of DNA concentration. Even so, the results suggest that only ∼10% of a 62-nt target will be lost due to degradation and targets up to 131 nt will suffer only a 20% loss. More significant losses were found to occur during the subsequent removal of bisulfite and desulfonation steps that appear to be the result of size selectivity associated with matrix binding and elution required prior to QPCR in the most commonly used protocols. For biospecimens yielding <1 μg of DNA, these findings suggest that bisulfite treatment, in current implementations of MS-QPCR, result in low recoveries that preclude reliable analysis of DNA methylation patterns regardless of target size.
BACKGROUND: TMPRSS2:ERG fusions are promising prostate cancer biomarkers. Because they can occur in multiple forms in a single cancer specimen, we developed a quantitative PCR test that detects both type III and type VI TMPRSS2:ERG fusions. The assay is quantified from a standard curve determined with a plasmid-cloned type III TMPRSS2:ERG fusion target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.